
Math 201 Exam #1

Name·

• Write all of your responses on these exam pages. If you need more space for your answers please use the backs of the exam pages.

- Make sure that you show all of your work, answers without supporting work will receive no credit.
- No calculation devices are to be used on this exam.
- 1. (10 Points) Given the graph of the the function f below, answer the following.

- (a) $\lim_{x \to -8} f(x) =$ _____
- (f) f(-2) =_____
- (b) f(-8) =
- (g) $\lim_{x \to 6} f(x) =$ _____
- (c) $\lim_{x \to -2} f(x) =$ _____
- (h) $\lim_{x\to 6^+} f(x) =$ _____
- (d) $\lim_{x \to -2^+} f(x) =$ _____
- (i) $\lim_{x \to 6^{-}} f(x) =$ _____
- (e) $\lim_{x \to -2^{-}} f(x) =$ _____
- (j) f(6) =
- (k) List all points of discontinuity. For each, state the type of discontinuity and state if the function is continuous from the left or right at that point.

Fall 2021 Page 1 of 6

 $\mathrm{Math}\ 201$ $\mathrm{Exam}\ \#1$

2. $(10 \ Points)$ Sketch the graph of an example of a function f that satisfies all of the given conditions.

(a)
$$\lim_{x \to -3} f(x) = 2$$

(b)
$$f(-3) = -2$$

(c)
$$\lim_{x \to 0^+} f(x) = 1$$

(d)
$$\lim_{x \to 0^-} f(x) = \infty$$

- (e) f(0) Does not exist.
- (f) $\lim_{x\to 1} f(x)$ Does not exist.

(g)
$$\lim_{x \to 2^+} f(x) = 4$$

(h)
$$\lim_{x \to 2^{-}} f(x) = 3$$

(i)
$$f(2) = 1$$

$$(j) \lim_{x \to \infty} f(x) = -2$$

(k)
$$\lim_{x \to -\infty} f(x) = 0$$

Fall 2021 Page 2 of 6

3. (10 Points) Find the following limit using limit laws. Keep your answer in exact form.

$$\lim_{x \to -1} \frac{x+1}{x^3+1}$$

4. (10 Points) Find the following limit using limit laws. Keep your answer in exact form.

$$\lim_{h \to 0} \frac{(-2+h)^{-1} + 2^{-1}}{h}$$

5. (10 Points) Find the following limit using limit laws. Keep your answer in exact form.

$$\lim_{x \to 2} \frac{x^2 - 4x + 4}{x^4 - 3x^2 - 4}$$

6. (10 Points) Find the following limit using limit laws. Keep your answer in exact form.

$$\lim_{t \to 0} \left(\frac{1}{t} - \frac{1}{t^2 + t} \right)$$

Math 201

7. (10 Points) Show that there is a solution of the equation

$$\sin(x) - \frac{1}{4} = \cos(x) + \frac{1}{4}$$

in the interval $\left(\frac{\pi}{4}, \frac{2\pi}{3}\right)$

8. (10 Points) Find the following limits. Keep your answers in exact form.

$$\lim_{x \to \infty} \frac{x+3}{\sqrt{2x^2 - 1}}$$

$$\lim_{x \to \infty} \frac{x+3}{\sqrt{2x^2 - 1}} \qquad \qquad \lim_{x \to -\infty} \frac{x+3}{\sqrt{2x^2 - 1}}$$

 $\mathrm{Math}\ 201$ $\mathrm{Exam}\ \#1$

9. (10 Points) Find the following limits. Keep your answers in exact form.

$$\lim_{x \to \infty} \left(\sqrt{4x^2 + 3x} + 2x \right) \qquad \qquad \lim_{x \to -\infty} \left(\sqrt{4x^2 + 3x} + 2x \right)$$

$$\lim_{x \to 0} \left(\sqrt{x^3 + x^2} \right) \sin \left(\frac{\pi}{x} \right) = 0$$

Fall 2021 Page 6 of 6