Name: _____

Write all of your responses on these exam pages, use the back if necessary. Show all your work, answers without supporting justification will not receive credit.

1. (30 Points): Find the following limits, do not use Bernoulli's (l'Hospital's) Rule.

(a)
$$\lim_{h \to 0} \frac{(h-1)^3 + 1}{h}$$

(b)
$$\lim_{x \to 0^+} \tan^{-1}(1/x)$$

(c) $\lim_{x \to 0} \cos(x^3 + 3x)$

2. (20 Points): Using the definition of the derivative find f'(x) for $f(x) = \frac{2}{x^2}$.

- 3. (50 Points): Using the derivative rules find f'(x) for the following functions,
 - (a) $f(x) = 10^{\tan(\pi x)}$

(b)
$$f(x) = \frac{x^4 - 1}{x^4 + 1}$$

(c) $f(x) = \cos(x)^{\sin(x)}$

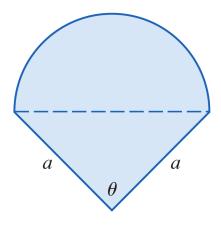
(d) $f(x) = x^2 \sec(\pi x)$

(e)
$$f(x) = \frac{\sin(x)}{x^3}$$

(f) $f(x) = \sinh(x^2) \tanh(x)$

4. (15 Points): Find
$$\frac{dy}{dx}$$
 of $y^2 \sin(x) = \cos(xy)$.

5. (20 Points): Find the absolute minimum and absolute maximum of $f(x) = x + 2\cos(x)$ on $[-\pi, \pi]$.


- 6. (30 Points): Given the function $f(x) = -2x^3 3x^2 + 12x$,
 - (a) Find f'(x).
 - (b) Find all the critical numbers to the function.
 - (c) Find the intervals of increasing and decreasing of the function.
 - (d) Find all local maximums and minimums of the function.

(e) Find f''(x).

- (f) Find all the places where the function could change concavity.
- (g) Find the intervals of concave up and concave down of the function.
- (h) Find all of the points of inflection.

Note that the next page is blank for you to continue your solutions to this exercise.

7. (15 Points): The figure shows an isosceles triangle with equal sides of length a surmounted by a semicircle. What should the measure of angle θ be in order to maximize the total area?

8. (30 Points): Find the following integrals,

(a)
$$\int \frac{\sec(x)\tan(x)}{1+\sec(x)} dx$$

(b)
$$\int_{1}^{9} \frac{\sqrt{x} - 2x^2}{x} dx$$

(c)
$$\int_0^{\pi/4} (1 + \tan(x))^3 \sec^2(x) dx$$

(d) $\int \sinh(1+4x) \, dx$