
MATH 202 Exam #5 — Solutions

1. (10 Points) Determine if the following sequence converges or diverges. If it converges,
find the value it converges to and if it diverges show why.{
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2. (15 Points) Determine if the following series converges or diverges. If it converges, find
the value it converges to and if it diverges show why.
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Solution:
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The first is geometric with a = 5
π
and r = 1

π
, so the sum is 5

π−1
. The second is

telescoping with sum 3
4
. So the sum of the original series is 3

4
+ 5

π−1
.

3. (15 Points) Use the integral test to determine if the following series converges or di-
verges.

∞∑
n=2

ln(n)

n2

Solution:∫ ∞
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Hence the series converges.

4. (10 Points) Use comparison or limit comparison to determine if the following series
converges or diverges.

∞∑
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1

n
√
n2 − 1

Solution: Limit compare with 1/n2.

lim
n→∞

1/n2

1/(n
√
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= lim
n→∞

n
√
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√
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√
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Since
∑∞

n=1
1
n2 converges, p series with p > 1, the original series converges.
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5. Extra Credit (5 Points) Show that the following sequence converges and find the
limit of the sequence.√

2,

√
2 +

√
2,

√
2 +

√
2 +

√
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2 +
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√
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√
2, . . .


Solution: To show that this sequence does converge note that a1 =

√
2 and an+1 =√

2 + an. So a2 =
√
2 +

√
2 >

√
2 = a1. By induction, assume that an > an−1, then

an+1 =
√
2 + an >

√
2 + an−1 = an, so the sequence is monotonically increasing. The

sequence is also bounded above by 3 (or anything larger). Note that a1 =
√
2 < 3 and

by induction if an < 3 then an+1 =
√
2 + an <

√
2 + 3 =

√
5 < 3. So by the Monotonic

Sequence Theorem the limit exists.

Since the sequence converges, let x represent the limiting value. Then x =
√
2 + x.

So x2 = 2 + x, giving x2 − x − 2 = 0. The solutions to this equation are x = 2 and
x = −1. Since all the terms are positive the only viable solution is 2.
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