MATH 202 Exam #6 — Solutions

1. (10 Points Each) For each of the following series determine if the series is absolutely
convergent, conditionally convergent, or divergent.
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Solution:
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Using the root test
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So the series is absolutely convergent.
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Using the divergence test lim,, .o, cos(1/n?) = cos(0) = 1 # 0, so the series is
divergent.
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Using direct comparison,
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the series Y (%)n is a geometric series with » > 1 and hence diverges. By the
comparison above the original series will also diverge.

2. (10 Points) Find the interval and radius of convergence of the following power series.
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Solution: Using the ratio test,
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So we have convergence when 1 |z — 1| < 1, specifically —1 < 2 < 3. Checking the
endpoints, first r = —1,
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which diverges by comparison to the harmonic series, second x = 3,
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which converges by the alternating series test. So the interval of convergence is (—1, 3]
and the radius of convergence is R = 2.

3. (10 Points) Given that
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Find the power series for the following function as well as its radius of convergence.
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Solution: Recall that
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So

The radius of convergence is R = %

4. Extra Credit (5 Points) Find the interval and radius of convergence of the following

power series.
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Solution: Using the ratio test,
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So we have convergence for —2 < x < 2. Checking the endpoints, first v = —2,
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So by the divergence test the series diverges. The same will hold true for x = 2. So
the interval of convergence is (—2,2), and the radius of convergence is R = 2.
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