MATH 202 Exam #3 — Solutions

1. (25 Points): Determine whether the integral
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is convergent or divergent. If it is convergent, find its value.

Solution:
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— lim In (HLJ +In(2) = In(2)

2. (25 Points): Find the exact length of the curve,

onl<zx<2.
Solution: f'(x) =

3. (25 Points): Find the exact area of the surface obtained by rotating the curve y? = x+1,
0 <z < 3, about the z-axis.

Solution: z = y* — 1, so dz/dy = 2y, and
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4. (25 Points): Determine whether the sequence

a, =ne™"

converges or diverges. If it converges, find the limit.

Solution: )
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5. Extra Credit: (10 Points): Do one and only one of the following.

(a)

A sequence {a,} is defined by a; = V2 and ani1 = /2 + a,. That is, the sequence

is V2, V24+v2,\/2+ V2 + V2, \/2+\/2+\/2+\/§,....

i. Show that {a,} is increasing and bounded above by 3, hence it converges.

ii. Find lim,,_, a,,.

Solution: Note that in the innermost root we always have 2++/2, and 2++v/2 > 2.
If we replace the innermost root 2 + v/2 with 2 we thus get a smaller value, but
this is just the previous term in the sequence. Hence a,,1; > a,, therefore the
sequence is increasing.

To verify that the sequence is bounded by 3, we use induction. First, a; = v/2 < 3,
now assume that a, < 3, then a,y1 = 2+ a, < vV2+3 = V5 < 3, hence all
values in the sequence are less than 3.

For the limit, note that if we denote the value of the limit as x then = = /2 + .
So 22 = 2+x and the sum is a solution to #2—x—2 = 0, that is (z — 2) (z + 1) = 0.
So the sum is either 2 or —1, since —1 is clearly an extraneous solution the sum
is 2.

Gabriel’s Horn: The surface formed

by rotating the curve y = 1/x, z > 1, ¥
about the x-axis is known as Gabriel’s y:%
horn. Show that the surface area is infi-

nite and show that the volume is finite.
Hence this is an object you can fill with
paint but you cannot paint it.

Solution:
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