
MATH 202 Exam #4 — Solutions

1. (45 Points): Test the series for convergence or divergence.
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Solution: Converges, using the Ratio Test.
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Solution: Diverges, using the Integral Test.∫ ∞
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Solution: Diverges, using the Divergence Test.

lim
n→∞

ln

(
n

3n+ 1

)
= ln(1/3) ̸= 0

2. (20 Points): Find the radius of convergence and interval of convergence of the power
series,
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Solution:
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∣∣∣∣ = 4|x|

So 4|x| < 1 giving |x| < 1/4, hence the radius of convergence is 1/4. Checking the
endpoints of x = 1/4 and x = −1/4,
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which converges by the alternating series test.

∞∑
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which diverges by the p-series test, p = 1/2 ≤ 1. So the interval of convergence is
(−1/4, 1/4].
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3. (15 Points): Find a power series representation for the function f(x) =
x2

x4 + 16
and

determine the radius of convergence.

Solution:
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= x2 1
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The radius of convergence is when (x/2)4 < 1, that is x < 2, so the radius of conver-
gence is 2.

4. (20 Points): Find the Taylor series for f(x) = ln(x) centered at a = 2.

Solution:

f(2) = ln(2)
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So for n ≥ 1, f (n)(2) = (−1)n+1 (n−1)!
2n

. Hence the Taylor Series is
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∞∑
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5. Extra Credit: (10 Points): Find the exact sum of the series.
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Solution:
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≈ 0.8304853255
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