MATH 202 Exam #4 — Solutions

1. (45 Points): Test the series for convergence or divergence.
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Solution: Converges, using the Ratio Test.
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Solution: Diverges, using the Integral Test.
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Solution: Diverges, using the Divergence Test.
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2. (20 Points): Find the radius of convergence and interval of convergence of the power
series,
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So 4|z| < 1 giving |z| < 1/4, hence the radius of convergence is 1/4. Checking the
endpoints of z = 1/4 and x = —1/4,
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which converges by the alternating series test.
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which diverges by the p-series test, p = 1/2 < 1. So the interval of convergence is

(—1/4,1/4].
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3. (15 Points): Find a power series representation for the function f(z) = 116 and
x
determine the radius of convergence.
Solution:
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The radius of convergence is when (z/2)* < 1, that is x < 2, so the radius of conver-
gence is 2.

4. (20 Points): Find the Taylor series for f(z) = In(x) centered at a = 2.
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So for n > 1, f(M(2) = (—1)"*1%. Hence the Taylor Series is
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5. Extra Credit: (10 Points): Find the exact sum of the series.

Solution:
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