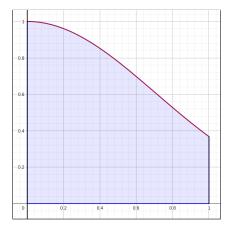
Name: _____

Write all of your responses on these exam pages, use the backs if necessary. Show all your work, answers without supporting justification will not receive credit.

1. (60 Points): Find the following integrals. Keep your answer in exact form.

(a)
$$\int \frac{\sin(\ln(t))}{t} dt$$

(b)
$$\int_{1}^{2} x^{5} \ln(x) dx$$


(c)
$$\int \frac{x+3}{x^2+6x+5} \, dx$$

(d) $\int x \sin(x) \cos(x) dx$

(e)
$$\int_{1}^{\infty} \frac{\ln(x)}{x} dx$$

2. (60 Points): Integral Applications

(a) Find the volume generated by rotating the region bounded by $y = e^{-x^2}$, y = 0, x = 0 and x = 1 about the y-axis.

(b) Find the exact length of the curve, $12x = 4y^3 + 3y^{-1}$, for $1 \le y \le 3$.

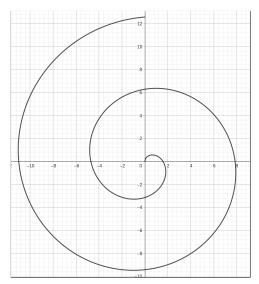
- 3. (60 Points): Sequences and Series
 - (a) Determine whether the series is convergent or divergent.

$$\sum_{n=1}^{\infty} \frac{(-5)^{2n}}{n^2 \, 9^n}$$

(b) Determine whether the series is absolutely convergent, conditionally convergent, or divergent.

$$\sum_{n=1}^{\infty} \frac{(-1)^n (n+1)3^n}{2^{2n+1}}$$

(c) Find the radius of convergence and interval of convergence of the series.


$$\sum_{n=0}^{\infty} \frac{2^n (x-3)^n}{\sqrt{n+3}}$$

(d) Find the Maclaurin series for $f(x) = 10^x$ and the associated radius of convergence.

(e) Find the Taylor series of $f(x) = \cos(x)$ at $x = \pi/3$.

- 4. (30 Points): Parametric Equations
 - (a) Find dy/dx and d^2y/dx^2 for $x = t^2 + 1$, $y = e^t 1$. For which values of t is the curve concave upward?

(b) Find the exact length of the curve, $x = t \sin(t)$, $y = t \cos(t)$ for $0 \le t \le 4\pi$.

