Fall 2012

Exam #3

Math 306

Name: _____

Write all of your responses on these exam pages. If you need more space please use the backs. Make sure that you show all of your work.

- 1. **Definitions and Short Answer:** (*3 Points Each*) Give a definition or short answer for each of the following.
 - (a) A Subspace of a vector space V.

(b) The Kernel of a Linear Transformation.

(c) An Eigenvalue and Eigenvector of a matrix A.

(d) The Coordinate Vector of a vector \mathbf{x} in a vector space V with respect to a given ordered basis \mathcal{B} .

(e) The Characteristic Equation of a matrix A.

- 2. **True and False:** (3 Points Each) Mark each of the following as either true or false. If the statement is false either give a counterexample or explain why the statement is false.
 - (a) \square \mathbb{R}^2 is a subspace of \mathbb{R}^4 .
 - (b) _____ If **f** is a vector in the vector space C[0, 1] of all continuous functions on the interval [0, 1] and f(t) = 0 for some $t \in [0, 1]$ then **f** is the zero vector of the vector space.
 - (c) _____ Given a linear transformation $T: V \to W$, the range of T is a subspace of V.
 - (d) _____ A set consisting of a single vector forms a linearly independent set.
 - (e) _____ Given any linearly independent set of vectors S in a finite dimensional vector space V there is a subset of S that forms a basis to V.
 - (f) If $P_{\mathcal{B}}$ is the change of coordinate matrix, then for any vector $\mathbf{x} \in V$ we have $P_{\mathcal{B}}\mathbf{x} = [\mathbf{x}]_{\mathcal{B}}$.
 - (g) _____ The eigenvalues of a matrix are on the main diagonal in the reduced echelon form of the matrix.
 - (h) _____ Given an $n \times n$ matrix $A \neq I_n$ with real entries, such that $A^4 = I_n$, then the only eigenvalue of A is 1.
 - (i) _____ If a matrix A is invertible then A is diagonalizable.
 - (j) _____ If AP = PD with D diagonal then the columns of P are eigenvectors of A.

- 3. Calculations: Do each of the following. Keep all of your answers in exact form.
 - (a) (10 Points) Let $S = \{1, \sin(x), \sin^2(x), \cos(2x)\}$ and let H = Span(S). Show that the set S is linearly dependent and then extract a subset of S that is a basis for H. Verify that it is a basis.

(b) (10 Points) Given the basis $\mathcal{B} = \{(1, -1, 2), (3, 2, -1), (2, 4, -3)\}$ of \mathbb{R}^3 find $P_{\mathcal{B}}$ and $[\mathbf{x}]_{\mathcal{B}}$ where $\mathbf{x} = (1, 1, 1)$. (c) (10 Points) Given the two ordered bases $\mathcal{B} = \{2, 5+x, 3-2x+x^2\}$ and $\mathcal{C} = \{1-x, 3+2x, 1+x^2\}$ of \mathbb{P}_2 . Let $T : \mathbb{P}_2 \to \mathbb{P}_2$ be defined as differentiation, that is, $T(ax^2+bx+c) = 2ax+b$. Find the matrix of T relative to the bases \mathcal{B} and \mathcal{C} .

(d) (20 Points) Consider the following matrix A.

$$A = \begin{bmatrix} 3 & 3 & -3 \\ -4 & -5 & 6 \\ -2 & -3 & 4 \end{bmatrix}$$

- i. Find the characteristic polynomial of the matrix A.
- ii. Find the eigenvalues of the matrix A.
- iii. What is the algebraic multiplicity of each eigenvalue?
- iv. For each eigenvalue, find a basis to the eigenspace for that eigenvalue.
- v. What is the dimension of each eigenspace?
- vi. Is the matrix A diagonalizable? If so, find matrices P and D such that D is diagonal and $A = PDP^{-1}$ and if not explain why.

(More space for exercise 3d)

- 4. **Proofs:** (5 Points Each) Do each of the following.
 - (a) Prove that if two $n \times n$ matrices are similar then they have the same eigenvalues.

(b) Show that if A is both diagonalizable and invertible then so is A^{-1} .

(c) Show that the coordinate mapping is both one-to-one and onto.