Spring 2012

Final Exam

Name: ____

Write all of your responses on these exam pages. If you need more space please use the backs. Make sure that you show all of your work.

- 1. **Definitions:** (4 Points Each) Give a definition for each of the following.
 - (a) A Linear Transformation

(b) Linear Independence and Dependence

(c) A Basis of a vector space V

(d) An Eigenvalue and Eigenvector of a matrix

(e) The Kernel of a linear transformation

(f) A Subspace of a vector space V

(g) The Dimension of a vector space ${\cal V}$

(h) The Orthogonal Complement of a subspace W of \mathbb{R}^n

- 2. True and False: (2 Points Each) Mark each of the following as either true or false. If the statement is false either give a counterexample or correct the statement so that it is true. The insertion of the word not or changing an = to \neq is insufficient for correcting a statement.
 - (a) _____ The solution set to a linear system involving variables x_1, \ldots, x_n is the set of all lists of numbers (s_1, \ldots, s_n) that makes each equation in the system a true statement when the values s_1, \ldots, s_n are substituted for x_1, \ldots, x_n respectively.
 - (b) _____ If every column of the coefficient matrix of an augmented matrix contains a pivot then the system is consistent.
 - (c) _____ The system $[\mathbf{a}_1 \ \mathbf{a}_2 \ \mathbf{a}_3 \ \mathbf{b}]$ is consistent if and only if $\mathbf{b} \in \text{Span}(\{\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3\})$.
 - (d) _____ If $A\mathbf{x} = \mathbf{b}$ is consistent then any solution to the system can be written as $\mathbf{w} = \mathbf{p} + \mathbf{v}$, where \mathbf{v} is a solution to the corresponding homogeneous system and \mathbf{p} is a single fixed vector.
 - (e) _____ If four distinct vectors in \mathbb{R}^n lie in the same plane then they must be linearly dependent and a subset of two of them will form a basis to the span of the four vectors.
 - (f) _____ Any linear transformation from \mathbb{R}^n to \mathbb{R}^m can be written as an $n \times m$ matrix.
 - (g) $\underline{} T(\mathbf{x}) = \mathbf{y}$. A map $T : \mathbb{R}^n \to \mathbb{R}^m$ is onto if given any vector $\mathbf{y} \in \mathbb{R}^m$ there is one vector $\mathbf{x} \in \mathbb{R}^n$ such that
 - (h) _____ $(AB^{-1}C)^T = C^T (B^T)^{-1} A^T$
 - (i) _____ If A is a matrix such that $A\mathbf{x} = \mathbf{e}_1$ has an infinite number of solutions, then there exists a number j with $2 \le j \le n$ where $A\mathbf{x} = \mathbf{e}_j$ is inconsistent.
 - (j) _____ If A^T is not invertible then A is not invertible.

- (k) _____ If A is an $n \times m$ matrix then the set of all linear combinations of the rows of A form a subspace of \mathbb{R}^n .
- (1) _____ The rank of a matrix A is the dimension of the row space of A.
- (m) _____ If a matrix B is obtained from a square matrix A by doing a row swap, then a column swap and finally multiplying one row by a non-zero constant and adding the result to another row, then |B| = |A|.
- (n) _____ The Nul(A) is the kernel of the transformation $T(\mathbf{x}) = A\mathbf{x}$.
- (o) _____ If AP = PD where D is diagonal and P is invertible then the columns of P are eigenvectors of A and the diagonal entries of D are the roots of the characteristic polynomial of A.
- (p) _____ If $P_{\mathcal{B}}$ is the change of coordinate matrix then $P_{\mathcal{B}}[\mathbf{x}]_{\mathcal{B}} = \mathbf{x}$ for all $\mathbf{x} \in V$.
- (q) _____ A vector space is infinite dimensional if there does not exist a finite subset of vectors that span the space.
- (r) _____ If U is a matrix with orthonormal columns then the transformation $T(\mathbf{x}) = U\mathbf{x}$ preserves both length and orthogonality.
- (s) _____ A square matrix A is not invertible if and only if 0 is an eigenvalue of A.
- (t) _____ If \mathbf{x} is orthogonal to each of the three vectors \mathbf{v}_1 , \mathbf{v}_2 and \mathbf{v}_3 , then \mathbf{x} must be orthogonal to every linear combination of \mathbf{v}_1 , \mathbf{v}_2 and \mathbf{v}_3 .

- 3. **Proofs:** (10 Points Each) Prove each of the following.
 - (a) Prove that if A is an invertible matrix then $|A| \neq 0$.

(b) Show that λ is an eigenvalue of a matrix A if and only if λ is an eigenvalue of A^T .

- (c) Let W be a subspace of \mathbb{R}^n with an orthogonal basis $\{\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_t\}$ and let $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_q\}$ be an orthogonal basis to W^{\perp} .
 - i. Explain why $\{\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_t, \mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_q\}$ is an orthogonal set.
 - ii. Explain why $\{\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_t, \mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_q\}$ spans \mathbb{R}^n .
 - iii. Show that $\dim(W) + \dim(W^{\perp}) = n$

- 4. Calculations: (15 Points Each) Do each of the following. For full credit you must show all of the steps in each derivation.
 - (a) Solve the following system of equations and put your final answer in parametric vector form.

$$3x_1 - x_2 + 11x_3 + 4x_4 = 18$$

$$-2x_1 + x_2 - 8x_3 - 3x_4 = -111$$

$$-5x_1 + 3x_2 - 21x_3 - 8x_4 = -26$$

$$3x_1 - 2x_2 + 13x_3 + 5x_4 = 15$$

(b) Find the inverse of the following matrix

$$\begin{bmatrix} 3 & -1 & 11 \\ -2 & 1 & -8 \\ -5 & 3 & -20 \end{bmatrix}$$

(c) Use cofactor expansion, reduction or a combination of both to find the determinant of the following matrix. Once you are to a 3×3 matrix you may use the short-cut method.

$$\begin{bmatrix} 9 & -2 & -7 & -8 & 9 \\ 0 & 0 & -7 & 1 & 0 \\ 0 & 2 & -1 & 5 & 1 \\ 1 & -5 & -10 & 4 & 6 \\ 0 & -8 & 8 & 2 & -3 \end{bmatrix}$$

(d) Find bases for Nul(A) and Col(A) for the given matrix A.

$$A = \begin{bmatrix} 3 & -1 & 11 & 4 & 18 \\ -2 & 1 & -8 & -3 & -11 \\ -5 & 3 & -21 & -8 & -26 \\ 3 & -2 & 13 & 5 & 15 \end{bmatrix}$$

(e) Let $T: \mathbb{P}_3 \to \mathbb{R}^3$ be defined as

$$T(\mathbf{p}) = \begin{bmatrix} \mathbf{p}(0) \\ \mathbf{p}'(0) \\ \mathbf{p}''(0) \end{bmatrix}$$

where \mathbf{p}' and \mathbf{p}'' are the first and second derivatives of \mathbf{p} .

i. Show that T is a linear transformation.

ii. Find a basis to the $\ker(T)$.

iii. Find a basis to the range of T.

iv. Is T one-to-one? Verify your answer.

v. Is T onto? Verify your answer.

vi. Is T an isomorphism? Verify your answer.

(f) For the following matrix A,

$$A = \left[\begin{array}{rrr} 24 & 88 & -22 \\ -16 & -62 & 16 \\ -40 & -160 & 42 \end{array} \right]$$

i. Find the characteristic polynomial for A.

ii. Find the eigenvalues and their multiplicities for A. (Hint: the eigenvalues are "nice" numbers)

iii. Find bases for each eigenspace of A.

iv. Is A diagonalizable? If so find D and P such that $A = PDP^{-1}$ and if not explain why.

(g) Let

$$\mathbf{y} = \begin{bmatrix} 3\\4\\5\\6 \end{bmatrix} \qquad \mathbf{u} = \begin{bmatrix} 1\\1\\0\\-1 \end{bmatrix} \qquad \mathbf{v} = \begin{bmatrix} 1\\0\\1\\1 \end{bmatrix}$$

and let $W = \text{Span}(\{\mathbf{u}, \mathbf{v}\})$. Write $\mathbf{y} = \mathbf{x} + \mathbf{z}$ where $\mathbf{x} \in W$ and $\mathbf{z} \in W^{\perp}$.