Name: .

Write all of your responses on this exam paper, use the back if necessary. Show all your work, answers without supporting justification will not receive credit.

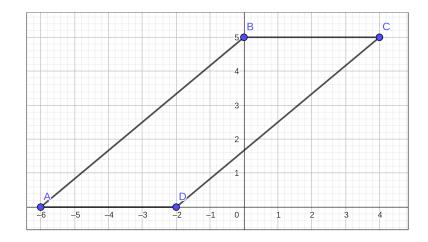
- 1. (30 points): Mark each of the following as either True or False by circling the correct answer.
 - (a) **True False**: The cofactor expansion of det(A) down a column is equal to the cofactor expansion along a row.
 - (b) **True False**: The determinant of a triangular matrix is the sum of the entries on the main diagonal.
 - (c) **True** False: If the columns of A are linearly dependent, then det(A) = 0.
 - (d) **True False**: Cramer's rule can only be used for invertible matrices.
 - (e) **True** False: \mathbb{R}^2 is a subspace of \mathbb{R}^3 .
 - (f) **True False**: The polynomials of degree two or less are a subspace of the polynomials of degree three or less.
 - (g) **True** False: The column space of A is the range of the mapping $\mathbf{x} \mapsto A\mathbf{x}$.
 - (h) **True** False: The kernel of a linear transformation is a vector space.
 - (i) **True** False: The null space of an $m \times n$ matrix is in \mathbb{R}^m .
 - (j) **True** False: The column space of an $m \times n$ matrix is in \mathbb{R}^m .

2. (15 points): Find the determinant of

$$\begin{bmatrix} 1 & 5 & 4 & 3 & 2 \\ 0 & 8 & 5 & 9 & 0 \\ 0 & 7 & 0 & 0 & 0 \\ 3 & 9 & 6 & 5 & 4 \\ 0 & 8 & 0 & 6 & 0 \end{bmatrix}$$

Is the matrix invertible?

3. (15 points): Find the area of the parallelogram whose vertices are (-6, 0), (0, 5), (4, 5), and (-2, 0).



4. (15 points): Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be a linear transformation given by the matrix,

$$A = \left[\begin{array}{rr} 1 & 4 \\ 3 & 1 \end{array} \right]$$

Let S represent the unit disk, that is the region $x^2 + y^2 \leq 1$, what is the area of T(S)?

5. (15 points): Let

$$W = \left\{ \begin{bmatrix} 4a+3b\\0\\a+b+c\\c-2a \end{bmatrix}, a, b, c \in \mathbb{R} \right\}$$

find a set S of vectors that spans W or give an example to show that W is not a vector space.

6. (10 points): Let H and K be subspaces of a vector space V . Show that the intersection $K \cap H$ is a subspace of V.

7. Extra Credit: (10 points): Find the determinants of the following matrices,

Г	1 1 1]	[1	1	1	1	1
						2
		1	2	3	3	3
		1	2	3	4	4
	2 3 4	1	2	3	4	5

Conjecture, but you do not need to prove, what the determinant is of the matrix,

ſ	1	1	1	• • •	1
	1	2	2	• • •	2
	1	2	3	•••	3
	÷	÷	÷	·	÷
	1	2	3	•••	n