- 1. (30 points): Mark each of the following as either True or False by circling the correct answer.
 - (a) **True False**: The cofactor expansion of det(A) down a column is equal to the cofactor expansion along a row. **True**
 - (b) **True False**: The determinant of a triangular matrix is the sum of the entries on the main diagonal. **False**
 - (c) **True** False: If the columns of A are linearly dependent, then det(A) = 0. **True**
 - (d) **True** False: Cramer's rule can only be used for invertible matrices. **True**
 - (e) **True** False: \mathbb{R}^2 is a subspace of \mathbb{R}^3 . False
 - (f) **True False**: The polynomials of degree two or less are a subspace of the polynomials of degree three or less. **True**
 - (g) **True** False: The column space of A is the range of the mapping $\mathbf{x} \mapsto A\mathbf{x}$. True
 - (h) **True** False: The kernel of a linear transformation is a vector space. **True**
 - (i) **True** False: The null space of an $m \times n$ matrix is in \mathbb{R}^m . False
 - (j) **True** False: The column space of an $m \times n$ matrix is in \mathbb{R}^m . True
- 2. (15 points): Find the determinant of

ſ	1	5	4	3	2
	0		5		0
	0	7	0	0	0
	3	9	6		4
	0	8	0	6	0

Is the matrix invertible?

Solution:

$$\begin{vmatrix} 1 & 5 & 4 & 3 & 2 \\ 0 & 8 & 5 & 9 & 0 \\ 0 & 7 & 0 & 0 & 0 \\ 3 & 9 & 6 & 5 & 4 \\ 0 & 8 & 0 & 6 & 0 \end{vmatrix} = -7 \begin{vmatrix} 1 & 4 & 3 & 2 \\ 0 & 5 & 9 & 0 \\ 3 & 6 & 5 & 4 \\ 0 & 0 & 6 & 0 \end{vmatrix} = 42 \begin{vmatrix} 1 & 4 & 2 \\ 0 & 5 & 0 \\ 3 & 6 & 4 \end{vmatrix} = 210 \begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix} = -420$$

Yes the matrix is invertible since $|A| \neq 0$.

3. (15 points): Find the area of the parallelogram whose vertices are (-6, 0), (0, 5), (4, 5), and (-2, 0).

Solution:

$$A = \left| \left| \begin{array}{cc} 4 & 6 \\ 0 & 5 \end{array} \right| \right| = 20$$

4. (15 points): Let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be a linear transformation given by the matrix,

$$A = \left[\begin{array}{rrr} 1 & 4 \\ 3 & 1 \end{array} \right]$$

Let S represent the unit disk, that is the region $x^2 + y^2 \le 1$, what is the area of T(S)? Solution:

$$area(T(S)) = ||A|| \cdot area(S) = \begin{vmatrix} 1 & 4 \\ 3 & 1 \end{vmatrix} \cdot \pi = 11\pi.$$

5. (15 points): Let

$$W = \left\{ \begin{bmatrix} 4a+3b\\0\\a+b+c\\c-2a \end{bmatrix}, a, b, c \in \mathbb{R} \right\}$$

find a set S of vectors that spans W or give an example to show that W is not a vector space.

Solution:

$$\begin{bmatrix} 4a+3b\\0\\a+b+c\\c-2a \end{bmatrix} = a \begin{bmatrix} 4\\0\\1\\-2 \end{bmatrix} + b \begin{bmatrix} 3\\0\\1\\0 \end{bmatrix} + c \begin{bmatrix} 0\\0\\1\\1 \end{bmatrix} \implies S = \left\{ \begin{bmatrix} 4\\0\\1\\-2 \end{bmatrix}, \begin{bmatrix} 3\\0\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1\\1 \end{bmatrix} \right\}$$

6. (10 points): Let H and K be subspaces of a vector space V . Show that the intersection $K \cap H$ is a subspace of V.

Solution:

- (a) Since $\mathbf{0} \in H$ and $\mathbf{0} \in K$, $\mathbf{0} \in H \cap K$.
- (b) Let $\mathbf{x} \in H \cap K$ and $\mathbf{y} \in H \cap K$, then $\mathbf{x} + \mathbf{y} \in H$ since H is a subspace and $\mathbf{x} + \mathbf{y} \in K$ since K is a subspace, hence $\mathbf{x} + \mathbf{y} \in H \cap K$.
- (c) Let $\mathbf{x} \in H \cap K$ and $c \in \mathbb{R}$, then $c\mathbf{x} \in H$ since H is a subspace and $c\mathbf{x} \in K$ since K is a subspace, hence $c\mathbf{x} \in H \cap K$.
- 7. Extra Credit: (10 points): Find the determinants of the following matrices,

[]	1 7	[1]	1	1	1	1]
$\begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 2 \end{bmatrix} \qquad \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 2 \end{bmatrix}$		1	2	2	2	2
		1	2	3	3	3
$\begin{bmatrix} 1 & 2 & 2 \\ 1 & 2 & 3 \end{bmatrix} \qquad \begin{bmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{bmatrix}$		1	2	3	4	4
	4	1	2	3	4	5

Conjecture, but you do not need to prove, what the determinant is of the matrix,

Γ	1	1	1	•••	1
	1	2	2	 	2
	1	2	3	•••	3
	:	÷	÷	۰.	÷
L	1	2	3	•••	n

Solution: The determinants of each of these is 1.