Name: _

Write all of your responses on these pages, use the backs if necessary. Show all your work, answers without supporting justification will not receive credit.

1. (25 points): Given the following matrix A,

$$A = \begin{bmatrix} -1 & -5 & -1 & -6 & 1\\ 2 & 10 & 1 & 10 & -3\\ -1 & -5 & 0 & -4 & 2 \end{bmatrix}$$

- (a) Find a basis to the column space of A.
- (b) Find a basis to the row space of A.
- (c) Find a basis to the null space of A.

2. (25 points): Given the following vectors, and $\mathcal{B} = \{\mathbf{b_1}, \mathbf{b_2}\}$ and $\mathcal{C} = \{\mathbf{c_1}, \mathbf{c_2}\}$

$$\mathbf{b_1} = \begin{bmatrix} 7\\5 \end{bmatrix} \quad \mathbf{b_2} = \begin{bmatrix} -3\\-1 \end{bmatrix} \quad \mathbf{c_1} = \begin{bmatrix} 1\\-5 \end{bmatrix} \quad \mathbf{c_2} = \begin{bmatrix} -2\\2 \end{bmatrix}$$

(a) Find $_{\mathcal{B}} \underset{\leftarrow}{\overset{P}{\leftarrow} c}$ (b) Find $_{\mathcal{C}} \underset{\leftarrow}{\overset{P}{\leftarrow} B}$ (c) Given that $[\mathbf{x}]_{\mathcal{B}} = \begin{bmatrix} 2\\ 3 \end{bmatrix}$, find $[\mathbf{x}]_{\mathcal{C}}$. 3. (50 points): Given the following matrix,

$$A = \left[\begin{array}{rrrr} 2 & 2 & -1 \\ 1 & 3 & -1 \\ -1 & -2 & 2 \end{array} \right]$$

- (a) Find the characteristic polynomial of A.
- (b) Find all the eigenvalues of A, and their algebraic multiplicities. Hints: $\lambda = 1$ is an eigenvalue, and all eigenvalues to this matrix are integers.
- (c) Find bases to each of the eigenspaces for A.
- (d) What is the dimension of each eigenspace and what geometric object is each eigenspace?
- (e) Is A diagonalizable? If so, find P and D such that $A = PDP^{-1}$.
- (f) Is A invertible? Why or why not?
- (g) If we define $T : \mathbb{R}^3 \to \mathbb{R}^3$ as $T(\mathbf{x}) = A\mathbf{x}$, and we let \mathcal{B} be the set of eigenvectors to A, what is $[T]_{\mathcal{B}}$?
- (h) Is T one-to-one? Why or why not?
- (i) Is T onto? Why or why not?
- (j) Is there a plane through the origin in \mathbb{R}^3 that T maps to a line through the origin? If so, find a plane that maps to a line, and if not, state why no such plane exists.

Note that the next page is blank for you to continue your solutions to this exercise.

4. Extra Credit: (10 points): The following matrix A was subjected to many iterations of the QR method and the result was the matrix B. Find all the eigenvalues to the matrix A.

	$\left[-\frac{117}{11} \right]$	$-\frac{54}{11}$	$-\frac{30}{11}$	$-\frac{60}{11}$	$-\frac{21}{11}$	$-\frac{30}{11}$		5	$\overline{7}$	9	-4	3	15	
A =	$-\frac{90}{11}$	$\frac{59}{33}$	$-\frac{10}{33}$	$\frac{46}{33}$	$\frac{16}{11}$	$\frac{56}{33}$	<i>B</i> =	0	2	-1	-1	1	6	
	$-\frac{130}{11}$	$-\frac{455}{33}$	$-\frac{287}{33}$	$-\frac{244}{33}$	$-\frac{60}{11}$	$\frac{208}{33}$		0	1	2	-5	8	1	
	$\frac{710}{11}$	$\frac{1000}{33}$	$\frac{712}{33}$	$\frac{929}{33}$	$\frac{150}{11}$	$\frac{52}{33}$		0	0	0	-3	-2	-1	
	$\frac{134}{11}$	$\frac{50}{11}$	$\frac{18}{11}$	$\frac{58}{11}$	$\frac{39}{11}$	$\frac{40}{11}$		0	0	0	0	5	-4	
	$-\frac{441}{11}$	$-\frac{878}{33}$	$-\frac{599}{33}$	$-\frac{703}{33}$	$-\frac{124}{11}$	$\frac{61}{33}$		0	0	0	0	4	5	