
A Crash Course in Undecidability

Contents

1 Introduction 2

2 Introduction, Preliminary Results and Notation 2

2.1 The Number of Turing Machines is Countably Infinite 2

2.2 Another Type of Equivalent Turing Machine 4

2.3 Some Closure Properties . 6

3 Not All Functions f : N→ N are Computable 6

4 The Halting Problem 7

5 Undecidability of Functional Properties 8

6 Exercises 11

7 Notes on Infinity 12

7.1 Quick Review of some Discrete Mathematics 12

7.2 Cardinality and Countability . 12

7.3 An Infinite Progression of Cardinals . 17

A Crash Course in Undecidability 2

1 Introduction

This document is a quick introduction to undecidability. The area of undecidability is vast
and can at times be very intricate, which makes putting it into a nutshell and hitting the
“main” topics nearly impossible. Nonetheless, this document attempts to summarize a few
of the more important results of the theory.

2 Introduction, Preliminary Results and Notation

2.1 The Number of Turing Machines is Countably Infinite

In Section 7 of this document we discuss the different sizes of infinity. For the purposes of
undecidability we need only realize the difference between a countable set and an uncountable
set.

Definition 1: A set is said to be countable (or enumerable or denumerable) if there is a
bijective map from it to a subset of N. A set that is not countable is said to be uncountable.

In other words, a set is countably infinite if we can find a one-to-one and onto map
between the elements of the set and the counting numbers. One thing to notice about this
definition is that it also includes finite sets. Note that not all texts agree on the inclusion
of finite sets in the definition of countable. In many books the term countable applies to
infinite sets only. Since we will be working exclusively with infinite sets in this discussion it
really does not make any difference. Also from this definition it is obvious that any subset
of a countable set is also countable.

Example 1: Let S = {a1, a2, . . . an} be any finite set. Then S∗ is countably infinite.

To see this we need only devise a way to enumerate S∗. One way is to order the set S∗

by word size then in each size we order by the given order in the set S. That is, we list all
of the elements of S∗ as,

λ, a1, a2, . . . an, a1a1, a1a2, a1a3, . . . a1an, a2a1, a2a2, a2a3, . . . , a2an, . . . , anan, a1a1a1, . . .

From this result, it is easy to establish that the set of Turing Machines is countably
infinite.

Theorem 1: The number of distinct Turing Machines is countably infinite.

Proof. There are clearly an infinite number of Turing Machines since there is no limit to
the number of transitions that are used in its definition. Another thing to note is that any
Turing Machine is uniquely defined by its set of transitions. We can write any transition of
a Turing Machine in binary form by using the following method. Let the set of states of the
Turing Machine be

Q = {q1, q2, q3, . . . , qn}

A Crash Course in Undecidability 3

and let the set of tape symbols of the Turing Machine be

Γ = {a1, a2, a3, . . . , am}

If we have the transition
δ(q1, a2) = (q3, a4, L)

we could write it using a unary representation for the subscripts and delimit them using 0’s.
We could also use the convention that L would be 1 and R would be 2. For example, the
transition above would be written as,

01011011101111010

and the transition
δ(q5, a1) = (q2, a2, R)

would be written as,
011111010110110110

Then to represent the entire Turing Machine we would simply concatenate all of the coded
transitions. This establishes that the set of all Turing Machines is a subset (in fact, obviously
a proper subset) of the set {0, 1}∗ which we know to be countable. Thus the number of Turing
Machines is countable.

And since our definition of an algorithm is that there exists a Turing Machine that can
preform the algorithm the above theorem tells us that there are a countably infinite number
of algorithms. Although you might think that this will be enough to keep you busy for a
while, we will see that it does impose some severe restrictions on what can be done by a
mechanical computing device.

Another couple points about this. You may have noticed that in the above proof we
did not concern ourselves with the order of the transitions when we created the coding of
the Turing Machine into 0’s and 1’s. So we could have the same Turing Machine counted
twice, or three times or more by rearranging the transitions in the coding process. This is
simply a technical point that does not affect the countability issue. We are simply saying
that two Turing Machines can have the same set of transitions but have different coding. As
computer scientists you should feel at home with this since as you know all too well that the
same program can be coded in many different ways.

This is not the only way to code a Turing Machine into a subset of {0, 1}∗. Gödel did a
similar, but different, coding process to enumerate the set of Turing Machines. This process
has become known as Gödel Numbering. Whatever process we use, we can associate any
Turing Machine M with a natural number.

Notation: Given a Turing Machine M , its associated natural number, or Gödel number,
is denoted as n(M).

A Crash Course in Undecidability 4

Example 2: The Turing machine that will move right until it hits a blank, R� can be
written as,

δ(q0, a) = (q0, a, R)

δ(q0, b) = (q0, b, R)

δ(q0,�) = (q1,�, R)

δ(q1, a) = (qf , a, L)

δ(q1, b) = (qf , b, L)

δ(q1,�) = (qf ,�, L)

To begin coding it we make the following alterations, we will increase the subscripts of the
states all by 1, hence making q1 the initial state and we will denote qf as q3. We will also
make the following associations, a1 = �, a2 = a, and a3 = b. With this, our transitions
become,

δ(q1, a2) = (q1, a2, R)

δ(q1, a3) = (q1, a3, R)

δ(q1, a1) = (q2, a1, R)

δ(q2, a2) = (q3, a2, L)

δ(q2, a3) = (q3, a3, L)

δ(q2, a1) = (q3, a1, L)

Using our coding scheme each transition would be encoded as,

01011010110110 0101110101110110 0101011010110

0110110111011010 011011101110111010 01101011101010

Giving the binary number

0101101011011001011101011101100101011010110011011011101101001101110111011101001101011101010

which represents the decimal number 878,642,009,785,702,569,885,997,802. So

n(R�) = 878, 642, 009, 785, 702, 569, 885, 997, 802

2.2 Another Type of Equivalent Turing Machine

In the Linz textbook[2], the definition of a Turing Machine had a set of favorable states that
was a subset of the set of states. This definition was consistent with the other automata we
have studied this semester. With this definition, a Turing Machine would accept a word if
the machine ended its computation, that is halted, on a favorable state. It would reject the
word if the machine halted on an unfavorable state. An equivalent definition of a Turing
Machine would be to remove the set of favorable states and consider the machine halting to

A Crash Course in Undecidability 5

be favorable and the machine not halting to be unfavorable. So a word would be accepted
if the Turing Machine halted on that word and not accepted if the Turing Machine did not
halt on that word. Formally,

Definition 2: A Turing Machine M accepts a word w ∈ Σ∗ if M(w) halts and does not
accept the word w if M(w) does not halt.

The equivalence of this type of Turing Machine with our definition is easily seen. If our
standard machine reaches a favorable conclusion it would halt anyway. If the machine would
halt in a non-favorable state we would simply create a trap-like state that put the machine
into an infinite loop.

When using this type of Turing Machine we get a similar, but slightly different, definition
of the computation of a function.

Definition 3: A Turing Machine M computes a function f : Σ∗ → Σ∗ if for each x ∈
Dom(f), M(x) = f(x) and for each x /∈ Dom(f), M(x) does not halt. Here, Dom(f)
represents the domain of the function f , which is of course a subset of Σ∗.

More specifically, we make a distinction between computable functions depending on if
their domain is all of Σ∗ or only part of Σ∗.

Definition 4: A function f : Σ∗ → Σ∗ is said to be Partial Turing Computable if Dom(f) ⊆
Σ∗ and there is a Turing Machine that computes it.

Definition 5: A function f : Σ∗ → Σ∗ is said to be Turing Computable if it is Partial
Turing Computable and if Dom(f) = Σ∗. That is, if Dom(f) = Σ∗ and there a Turing
Machine that computes f .

We can now define what it means for a language to be decidable.

Definition 6: Let L ⊆ Σ∗ be a language, the characteristic function of L is defined to be,

ηL(w) =

{
1 w ∈ L
0 w /∈ L

Definition 7: A Language L is called Decidable if there is a Turing Machine that computes
the characteristic function of L.

Note that the characteristic function of any language L has a domain of Σ∗. So if a
language is Decidable then its characteristic function is Turing Computable, that is, there
is a Turing Machine M that halts on every input word from Σ∗ and outputs either a 1 or
0 depending on w ∈ L or w /∈ L respectively. For this reason, decidable languages are
sometimes called Turing Computable languages. We will use the term Decidable.

Definition 8: A language L is called Semidecidable if there is a Turing Machine M that
outputs 1 if w ∈ L and does not halt on any w /∈ L.

So the big difference between Decidable and Semidecidable is that for a decidable language
the associated Turning Machine must halt on every input and output either a 0 or 1 and
for a semidecidable language the associated Turning Machine must halt and output a 1 only
if the word was in the language. In other words, for a decidable language the associated

A Crash Course in Undecidability 6

Turning Machine must be able to tell if a word is in the language and if a word is not in the
language whereas for a semidecidable language the associated Turning Machine need only
be able to tell if a word is in the language.

2.3 Some Closure Properties

Although some of these properties rely on the negative result of the Halting Problem we
include them all here for convenience. We will simply state these without proof.

Theorem 2: If a language L is decidable then its complement L is decidable.

Theorem 3: If a language L is decidable then it is semidecidable.

Theorem 4: If a language L and is complement L are semidecidable then it is decidable.

Theorem 5: The class of semidecidable languages is not closed under complement.

Theorem 6: There exists languages that are not semidecidable.

3 Not All Functions f : N→ N are Computable

One of the primary uses of computing devices is to compute the value of functions. One
obvious question is whether or not all functions can be computed? The answer to this is
clearly no, which is probably no surprise to you. Especially since if we take a function
from the reals to the reals the domain of the function is uncountable and we know that
the number of Turing Machines, and hence algorithms, is countable. The restriction here is
actually more prominent. Let’s forget about all the problems with infinite decimal expansions
or the real numbers and round-off error associated with computational devices and consider
just functions from the natural numbers to the natural numbers, that is, f : N → N. The
natural numbers are a countable set, by definition. Even with these there are functions
that cannot be computed. To show that something cannot be computed we simply need to
establish that there is no Turing Machine that can compute it, hence there is no algorithm
that can compute it.

We will do this in a couple different ways. One way is to proceed indirectly and utilize
the material in Section 7 on the different sizes of infinity. If we consider the set of all of the
functions f : N→ N. Each of these functions has a domain which is a subset of N. Also, for
any subset of N there is a function with that domain. So there are at least as many functions
f : N → N as there are subsets of N. The number of subsets of N is the power set of N,
denoted as P(N) or 2N. From the results in Section 7 we know that |P(N)| > |N|, so P(N)
is uncountable. Hence the number of functions f : N→ N is uncountable and the number of
Turing Machines (algorithms) is countable, hence there must exist functions on N that are
not computable by any algorithm. In fact, along this line of reasoning there are actually an
uncountably infinite number of functions on N that are not computable.

Another way to justify this is to essentially do Cantor’s diagonalization proof that the

A Crash Course in Undecidability 7

real number are uncountable.

Theorem 7: There exists a function f : N → N that is not computable by any Turing
Machine and hence any algorithm. Specifically, there is a function f : N → N that is not
partial Turing computable.

Proof. Every partial Turing computable function is computable by some Turing Machine.
Let {Tk | Tk is a Turing Machine} be the set of all Turing Machines and let gk be the function
that is computed by the Turing Machine Tk, that is, gk(x) = Tk(x) for all x ∈ Dom(gk).
Now define the function f as follows,

f(x) =

{
gx(x) + 1 if x ∈ Dom(gx)
0 otherwise

We claim that the function f is not partial Turing computable. By Way of contradiction,
assume that it is. Then there must exist some Turing Machine that computes it, that is,
there is some machine Ti that computes f , so f(x) = Ti(x) for all x ∈ Dom(f). By the
definition of f , we see that the domain of f is all of N, that is Dom(f) = N. So Ti must halt
on the input i and furthermore Ti(i) = f(i). But then Ti(i) = f(i) = gi(i) + 1 = Ti(i) + 1
by the definitions of f and gx, a contradiction. Hence the function f is not partial Turing
computable. That is, f cannot be computed by any algorithm.

While this answers our question on computability, not everything can be computed by a
mechanical computational device, it is a bit unsatisfying. While we constructed an uncom-
putable function, it was clearly a function of little interest. We know we can do computations
like addition, multiplication, subtraction, division, modulus, powers and many higher-level
functions like trigonometric and logarithmic functions as well as processes like differentiation
and integration from Calculus to name just a few. It would be of much more interest if we
could find something that was not computable and would also be useful. This is what the
next two sections will be discussing.

4 The Halting Problem

Consider the following computational task,

Given the code (that is text) of any program P , in any programming language,
and any input X for the program, determine if P halts on X.

This would be a nifty addition to your debugging toolkit, would it not? It would determine
if your program was sent into an infinite loop on some input. How do you determine this
now? You run the program on lots of test data and if there is one scenario that causes the
program to hang you assume that there is a problem and perhaps it is some never-ending
loop. But there are many cases where this assumption would be wrong. Perhaps you gave
it an input that simply takes a long time to process. For example, if you have a program

A Crash Course in Undecidability 8

that factors integers into products of primes, some inputs will process quickly and some will
take your computer years to process, even if the program is completely correct. If you had
a program that would do the above task you would simply run it on your program and it
would instantly tell you if you have an infinite loop or not, no guesswork and no incorrect
assumptions.

The existence of such an algorithm is called the Halting Problem. That is, given the
code of a program and input for the program determine whether or not the program halts
on the input. As you probably guessed, there is no algorithm for accomplishing this task. If
there was, and if it was sufficiently efficient you would have it in every debugging toolbox in
every decent programming IDE.

Theorem 8: There does not exist an algorithm for solving the Halting Problem. That is,
there does not exist an algorithm such that, given the code of any program P and any input
X for the program, that will determine if P halts on X.

Proof. By way of contradiction, assume that an algorithm exists that will solve the Halting
Problem. Then the algorithm can be implemented in the same programming language as
the program P . Let H denote the implementation of this program. So H will take two
inputs (parameters if you will) P and X, where P represents the code of the program and
X the input data. Then, H(P,X) will output 1 if P halts on X and 0 if P does not halt
on X. Now create another program called D, where D is defined as D(P) = H(P, P). In
other words, D(P) asks if the program P halts on its own code and returns either 0 or 1.
Now create another program called C, where C is defined as follows. C takes a single input
of the program code of P , calls the D program on P , if D(P) returns 0 then C halts and
if D(P) returns 1, C goes into an infinite loop and does not halt. If the program H exists,
then the programs D and C are easy to construct. Now let’s take a look at the program C
and run it on its own code. If C(C) halts, then D(C) = 0, so 0 = D(C) = H(C,C) and
by the definition of H this says that C does not halt on C, which is a contradiction. On
the other hand, if C(C) does not halt, then D(C) = 1, so 1 = D(C) = H(C,C) and by the
definition of H this says that C halts on C, which is another contradiction. So C cannot
halt on its own code nor can it not halt on its own code, therefore C cannot exist and thus
our assumption that H exists is false as well.

The above theorem shows that there is no algorithmic solution to the halting problem
and as a consequence we cannot construct a program that will determine is another program
will halt on a particular input.

5 Undecidability of Functional Properties

We are going to take this one step further. Although nonexistence of an algorithm to solve
the halting problem is significant, there are other large families of non-computable tasks.
We will look at one of them here.

A Crash Course in Undecidability 9

In this section, as in the last, we will associate a program P with its code. So when we
say a program P we are thinking of the what the program does and also the string of code
that implements the program. If we think of a program P as its code we can also consider it
as a word in a language since it would be an element of Σ∗ over some alphabet Σ. So when
we write P ∈ L we are considering the code of P as a word in a language L.

Definition 9: A program P has the Property defining the language L if P ∈ L and does
not have the property if P /∈ L.

Example 3: Say L is the language of all sorting programs. So if a program sorts a list it
is in L and if the program does not sort a list then it is not in L. So if P is a program that
does the quick-sort then P ∈ L and if Q is a program that does a linear search of a list then
Q /∈ L.

Now let’s consider two languages that define properties.

• L1 = {P | P outputs 1 on an input of 0}

• L2 = {P | P halts on an input of 0 in at most two steps}

The big difference between these two properties is that the first deals with what the
program does and the second with how the program does it. We formalize this difference by
defining a functional property.

Definition 10: Let f be a function and let Pf be the set of all programs that compute f .
A property L of programs is called Functional if

1. For any function f , either P ∈ L for all programs P ∈ Pf or P /∈ L for all programs
P ∈ Pf .

2. Neither L nor L are empty.

Example 4: Let L1 = {P | P outputs 1 on an input of 0}, then L1 is a functional property.
To prove that L1 is a functional property, let f be any function. Then either f(0) = 1 or it
does not. If f(0) = 1 then any program P that is in Pf will output 1 on an input of 0 and
thus P ∈ L1. On the other hand, if f(0) 6= 1 then any P that is in Pf will not output 1 on
an input of 0 and thus P /∈ L1. Furthermore, there are many functions that output 1 on an
input of 0 and those that don’t as well as programs that implement them, hence neither L1

nor L1 are empty.

Example 5: let L2 = {P | P halts on an input of 0 in at most two steps}, then L2 is not
a functional property. To see this we need a function that has some programs computing it
that are in L2 and some programs that compute it that are not in L2. Consider the function
f(w) = w, that is, the function that outputs the input. One program P1 ∈ Pf simply does
nothing and hence P1 ∈ L2. Another program P2 ∈ Pf does three dummy actions that do
nothing to the tape and then halts. So P2 /∈ L2. Hence there are programs in Pf that are in
L2 and programs in Pf that are not in L2, therefore L2 is not a functional property.

Some other examples of functional properties,

A Crash Course in Undecidability 10

• {P | P does not halt on an input of 1}

• {P | the number of inputs P halts on is finite}

• {P | P halts on every input}

Some examples of properties that are not functional,

• {P | P contains the transition δ(q1, a2) = (q3, a4, L)}

• {P | starting on an empty tape, P reaches state p7 in at most five steps.}

One of the most important results on functional properties is Rice’s Theorem. We state
Rice’s Theorem without proof, a sketch to a proof can be found in [1].

Theorem 9: (Rice’s Theorem) Any functional property of programs is undecidable.

In terms of programs and algorithms this means that if a language L defines a functional
property there does not exist an algorithm that will decide if a program is in the language
or not. So in the example of the language of sorting programs, a functional property, there
would not be an algorithm that could determine if a program was in the language. More
practically stated, there is no way to write a program that can take the code of another
program and determine if it will sort a list or not.

A Crash Course in Undecidability 11

6 Exercises

For each of the following properties determine if the property is functional or not. If it is
functional prove it and if not find two programs in Pf one in L and the other not in L.

1. L1 = {P | state q can be reached from state p in at most three steps}

2. L2 = {P | P halts in 10 or fewer steps on every input}

3. L3 = {P | P does not halt on an input of 2}

4. L4 = {P | P returns the square of the numeric input}

5. L5 = {P | there exists a configuration of P that yields a configuration with a given state q}

6. L6 = {P | P halts on all even number input}

7. L7 = {P | P is equivalent to a given program Q}

8. L8 = {P | P halts on no input}

A Crash Course in Undecidability 12

7 Notes on Infinity

7.1 Quick Review of some Discrete Mathematics

First a quick review of some topics from discrete mathematics.

Definition 11: A function or map f : X → Y is an injection (one-to-one) if whenever
f(x1) = f(x2) then x1 = x2.

Definition 12: A function or map f : X → Y is a surjection (onto) if for every y ∈ Y
there exist at least one x ∈ X such that f(x) = y.

Definition 13: A function or map f : X → Y is a bijection (a one-to-one correspondence)
if f is both injective and surjective.

Theorem 10: A bijective function f : X → Y has an inverse function, denoted f−1 : Y →
X, which is also a bijection.

Proof. Consult any text on discrete mathematics or logic, for example [3].

Example 6: Consider the two sets N and E = {2n | n ∈ N} and the function f : N → E
defined as f(x) = 2x. The function f is a bijection. To show that the function is injective we
assume that there are two elements, x1 and x2, in the domain, N, such that f(x1) = f(x2)
and we proceed to prove that x1 = x2. In many cases this reduces simply to some algebra,

f(x1) = f(x2)

2x1 = 2x2

x1 = x2

Hence the function f is an injection. To show that the function is a surjection we take an
arbitrary element, y of the codomain E and find an element x in the domain N such that
f(x) = y. If y is an arbitrary element of E we know, by the definition of E, that y = 2x
for some x ∈ N. So if we take the number x as the desired element we have f(x) = 2x = y,
proving that the function is surjective and therefore a bijection.

7.2 Cardinality and Countability

Definition 14: Two sets A and B have the same cardinality if there exists a bijective map
f from A to B.

Example 7: Consider the two sets A = {a, b, c} and B = {1, 2, 3}. Clearly they have the
same size (or cardinality), 3. But by our definition we must show the existence of a bijection
f between them. Easy enough, let f : A→ B be defined as f(a) = 1, f(b) = 2 and f(c) = 3.
This is clearly a bijection and hence our sets have the same cardinality.

Notation: We denote the size, or cardinality of a set A by |A|. Note that if A is finite
then |A| is simply the number of elements in the set.

A Crash Course in Undecidability 13

Example 8: Consider the two sets N and E = {2n | n ∈ N} from above and the function
f : N→ E defined as f(x) = 2x. We have shown that this function is a bijection and hence
E and N have the same cardinality, that is, they are the same size, |N| = |E|. One nifty
thing to note is that E is a proper subset of N. So we have a proper subset that is the same
size as the “bigger set”. Some texts use this property to define an infinite set since this does
not happen with finite sets. This also shows that the statement A ⊂ B ⇒ |A| < |B| only
applies to sets of finite size. Specifically, at least A being finite.

In our last example we used the notation |A| < |B|. What does this notation really
mean? If the sets A and B are finite it is obvious. If A is finite then |A| = n for some n ∈ N
and if B is finite then |B| = m for some m ∈ N and |A| < |B| simply means that n < m.
What if the sets A and B are infinite? Does it make any sense to write |A| < |B|? How
can we say ∞ <∞? This last inequality is nonsense, of course. The main problem with the
last inequality is the symbol ∞. It implies that there is one and only one “type” or “size”
of infinity. This can not be any further from the truth as we will soon see.

This still leaves us with the problem of what |A| < |B| means if both A and B are infinite
sets. Here is a definition,

Definition 15: Given two sets A and B we will say that |A| < |B| if there exists an injection
f : A → B but there does not exist a bijection between the two. Similarly, |A| = |B| means
that there does exist a bijection between the two sets and finally, |A| ≤ |B| means that there
is either an injection of A into B or there is a bijection between the two sets.

Now we will take a quick look at different sizes of infinity.

Definition 16: A set is said to be countable (or enumerable or denumerable) if there is a
bijective map from it to a subset of N. A set that is not countable is said to be uncountable.

Hence any finite set is countable, since if A is finite then |A| = n and we can clearly create
a bijective map from A to the set {1, 2, 3, . . . , n}. One thing to note is that some textbooks
define a countable set as being any set that can be put into a one-to-one correspondence
with N. If this were our definition then clearly finite sets would not be countable. We could
use either definition for what we need to do so there is no reason to split hairs on this topic.
I personally think that saying a finite set is not countable goes against our intuition since
we can clearly count a finite set. There may be times when we wish to restrict our attention
to just infinite sets that are countable, in which case we will say that the set is countably
infinite.

Now let’s do a few more examples, some will be obvious but others may surprise you.

Example 9: The set of all integers Z is countable. To show this we simply need to
establish a bijection between Z and N. To do this we can simply write down several specific
input/output values until our pattern is established or we can work toward some closed form
formula for the entire map. One way to get this map is as follows. We will let f : N→ Z be
the map and define f as f(0) = 0, f(1) = −1, f(2) = 1, f(3) = −2, f(4) = 2, For most
audiences this is enough to establish the bijection. We could go one step further and write

f(n) =

{
n/2 if n is even.
−(n+ 1)/2 if n is odd.

A Crash Course in Undecidability 14

Our next example is a little surprising, at least I think so, and the map we will construct
is a bit difficult to represent in closed form.

Example 10: The set of all rational numbers Q is countable. Recall that a rational
number is any number that can be written in the form a

b
where b 6= 0. To show that this set

is countable we will first show that the set of positive rational numbers is countable and then
we can apply an argument similar to the one in the last example to get both the positive
and negative rational numbers. So to show that the positive rational numbers are countable
we need to establish a bijection from N to Q+. Here is the trick, write the set of rational
numbers in a grid as follows.

1
1

2
1

3
1

4
1

5
1

6
1
· · ·

1
2

2
2

3
2

4
2

5
2

6
2
· · ·

1
3

2
3

3
3

4
3

5
3

6
3
· · ·

1
4

2
4

3
4

4
4

5
4

6
4
· · ·

1
5

2
5

3
5

4
5

5
5

6
5
· · ·

1
6

2
6

3
6

4
6

5
6

6
6
· · ·

...
...

...
...

...
...

. . .

Before we proceed we need to convince ourselves that this list actually contains all of the
positive rational numbers. It should be fairly clear since if someone were to hand you the
rational number n

m
(with both n and m positive) you could go to the mth row and the nth

column and n
m

would be in that position. Now since a bijection is an injection we need to
remove duplicates from the grid. Note that 1

1
= 2

2
= 3

3
= · · · , 1

2
= 2

4
= 3

6
= · · · . So we will

simply go through the grid and remove any number that has been previously encountered.
Another way to interpret this action is removing any fraction that is not in lowest terms.

1
1

2
1

3
1

4
1

5
1

6
1
· · ·

1
2

3
2

5
2

· · ·
1
3

2
3

4
3

5
3

· · ·
1
4

3
4

5
4

· · ·
1
5

2
5

3
5

4
5

6
5
· · ·

1
6

5
6

· · ·
...

...
...

...
...

...
. . .

Now to establish the map we zig-zag through the grid diagonally.

So our map would look something like this, f(0) = 1, f(1) = 2, f(2) = 1
2
, f(3) = 1

3
,

f(4) = 3, f(5) = 4, f(6) = 3
2
, f(7) = 2

3
, f(8) = 1

4
, To finish the example we apply the

A Crash Course in Undecidability 15

last example’s method to get the negative numbers into the map. For ecample, f(0) = 0,
f(1) = −1, f(2) = 1, f(3) = −2, f(4) = 2, f(5) = −1

2
, f(6) = 1

2
, f(7) = −1

3
, f(8) = 1

3
,

f(9) = −3, f(10) = 3, f(11) = −4, f(12) = 4, f(13) = −3
2
, f(14) = 3

2
, f(15) = −2

3
,

f(16) = 2
3
, f(17) = −1

4
, f(18) = 1

4
,

This zig-zag method can be used to prove some other interesting facts about countable
sets.

Theorem 11: The union of a countable collection of countable sets is countable.

Proof. Let A be the countable set of countable sets, so A = {A1, A2, A3, . . .} with A1 =
{a1,1, a1,2, a1,3, . . .}, A2 = {a2,1, a2,2, a2,3, . . .}, A3 = {a3,1, a3,2, a3,3, . . .}, and so on. Since
each of the Ai are countable and A is a countable collection of the Ai we can write the set
of all elements of all the Ai into a single grid as,

a1,1 a1,2 a1,3 a1,4 . . .
a2,1 a2,2 a2,3 a2,4 . . .
a3,1 a3,2 a3,3 a3,4 . . .
a4,1 a4,2 a4,3 a4,4 . . .

...
...

...
...

. . .

Now use the same zig-zag correspondence we used to show that the rational numbers were
countable. In other words, order the union of elements as

{a1,1, a1,2, a2,1, a3,1, a2,2, a1,3, a1,4, a2,3, a3,2, a4,1, . . .}

and use this ordering as the bijection with N.

Now let’s look at an example of a set that is not countable.

Example 11: The set of real numbers, R, is uncountable. The proof we will use is called
Cantor’s Diagonalization Proof. It is a proof by contradiction. Before starting the proof
recall that we can define the set of real numbers as the set of all decimal expansions. What
we will show is that the set of real numbers between 0 and 1 is uncountable. That is, the set
of numbers in the interval [0, 1]. If we establish that this set is uncountable then it clearly
follows that the entire set of real numbers is uncountable. By way of contradiction we will
assume that the set of real numbers in the interval [0, 1] is countable. This implies that there
is a one-to-one correspondence between N and [0, 1]. If there is then we can list all of the
real numbers in [0, 1] like so,

0.a1,1 a1,2 a1,3 a1,4 a1,5 a1,6 . . .
0.a2,1 a2,2 a2,3 a2,4 a2,5 a2,6 . . .
0.a3,1 a3,2 a3,3 a3,4 a3,5 a3,6 . . .
0.a4,1 a4,2 a4,3 a4,4 a4,5 a4,6 . . .
0.a5,1 a5,2 a5,3 a5,4 a5,5 a5,6 . . .
0.a6,1 a6,2 a6,3 a6,4 a6,5 a6,6 . . .
...

A Crash Course in Undecidability 16

The important thing to remember is that because of the assumption of countability we are
guaranteed that all of the real numbers in [0, 1] are in the above list. So to show that this
set is uncountable we will simply find a real number in [0, 1] that is not in this list. As for
the notation in the above list, ai,j is the jth decimal place of the ith number. Now consider
the diagonal of this grid, that is, the ai,i entries.

For each i select a number bi 6= ai,i and construct the number B = 0.b1b2b3b4b5b6 We
claim that B is not in the list we first constructed. B can not be equal to the first num-
ber in the list since the first decimal place of B differs from the first decimal place of
0.a1,1a1,2a1,3a1,4a1,5a1,6 B can not be equal to the second number in the list since the
second decimal place of B differs from the second decimal place of 0.a2,1a2,2a2,3a2,4a2,5a2,6
B can not be equal to the third number in the list since the third decimal place of B differs
from the third decimal place of 0.a3,1a3,2a3,3a3,4a3,5a3,6 . . ., and so on. Hence B is a real num-
ber in the interval [0, 1] that is not in our original list. Hence we can not list all real numbers
in the interval [0, 1] and therefore the set of real numbers in the interval [0, 1] is uncountable.
As we mentioned above, this implies that the set of real numbers is uncountable.

If the above argument is too abstract consider this illustrative sub example, the list would
look something like the following.

0.1248273994832 . . .
0.2539188773628 . . .
0.9923019928383 . . .
0.1029938847722 . . .
0.6472837462827 . . .
0.5559828728393 . . .
0.2847284950050 . . .
...

and the number B would be something like, B = 0.4718952 . . .

Note what this says about irrational numbers like π, e, and
√

2. If we let I represent
the set of irrational numbers we know that R = Q ∪ I. If I were countable then R would
be a union of two countable sets and hence be countable, which we know is not the case.
Therefore the set of irrational numbers is uncountable. Thus there exists far more irrational
numbers than rational numbers.

A Crash Course in Undecidability 17

7.3 An Infinite Progression of Cardinals

The material in the previous section shows us that there are at least two different sizes of
infinity, countable and uncountable. One can only ask is this the end of the story or is there
more here. From our definition of cardinality it is clear that all countable sets have the same
cardinality but what about the uncountable sets. All we know is that there is not a bijection
between an uncountable set and N, but that is all we know.

Recall from discrete mathematics the concept of the power set of a set. The power set
of a set, A, is the set of all subsets of A.

Example 12: Let A = {a, b, c} then the power set of A is

P(A) = {∅, {a}, {b}, {c}, {a, b}, {b, c}, {a, c}, {a, b, c}}

As you know from discrete mathematics if A is finite, |A| = n then the order of the
power set of A is |P(A)| = 2n. So for finite sets it is obvious that A and P(A) have different
cardinalities. Does the same hold for infinite sets? This question is a little harder to answer
since both A and P(A) are infinite. To verify a difference in cardinalities we need to show
that there does not exist a bijection between the two sets.

Theorem 12: |A| < |P(A)|

Proof. Since there is an injection g : A→ P(A) defined by g(a) = {a} we have |A| ≤ |P(A)|.
By way of contradiction assume that |A| = |P(A)|, then there exists a bijection f : A →
P(A). Consider the set A′ = {a ∈ A | a 6∈ f(a)}. Since A′ ∈ P(A) there exists a′ ∈ A
with f(a′) = A′. Now either a′ ∈ A′ or a′ 6∈ A′. If a′ ∈ A′ then by the definition of A′,
a′ 6∈ f(a′) = A′, a contradiction. If a′ 6∈ A′ then again by the definition of A′, a′ ∈ f(a′) = A′,
a contradiction. Thus no bijection f exists and |A| < |P(A)|.

This gives us an infinite sequence of progressively larger sizes of infinity.

|N| < |P(N)| < |P(P(N))| < |P(P(P(N)))| < · · ·

Note that each of the sets P(N),P(P(N)),P(P(P(N))), . . . is uncountable. So there are an
infinite number if sizes of infinity that are all uncountable.

One obvious question that arises from the above list is whether or not this list gets all of
the sizes of infinity. That really breaks into two separate questions. First, is there a size of
infinity that is larger than any of those in the above list? And is there a size of infinity that
is between any of these?

The answer to the first questions is, yes. There are sizes of infinity larger than any that
can be formed by P(P(· · · P(N) · · ·)). The answer to the second question is still unknown.
To simplify the discussion we will introduce some new notation.

Notation: We denote |N| = ℵ0 and |R| = ℵ. These numbers are referred to as infinite
cardinals or infinite cardinal numbers.

A Crash Course in Undecidability 18

Definition 17: We define the sequence of infinite cardinals ℵ0, ℵ1, ℵ2, . . . to mean that
ℵi < ℵi+1 for all i and that there is no infinite cardinal ℵ′ such that ℵi < ℵ′ < ℵi+1 for any
i. In terms of sets this means that for any i there exists a set Ai such that |Ai| = ℵi. Also,
there exists an injection from Ai to Ai+1 for all i and there does not exist a bijection from
Ai to Ai+1. Furthermore, it also means that there does not exist a set B such that there are
injections from Ai to B and B to Ai+1 and no bijections between Ai and B or B and Ai+1.

Notation: Some logic texts will use exponential notation to denote the infinite cardinals.

For example, |N| = ℵ0, |P(N)| = 2ℵ0 , |P(P(N))| = 22ℵ0 , |P(P(P(N)))| = 222
ℵ0

, In
general, if a set A has size |A| = p, where p could be finite or infinite then the size of its
power set is denoted |P(A)| = 2p.

Now we know that |N| < |P(N)| < |P(P(N))| < |P(P(P(N)))| < · · · and |N| = ℵ0. We
also know, although we have not proven it, that |P(N)| = |R| = ℵ. One of our questions
above can be stated as, does ℵ1 = ℵ? That is, is |R| the next infinite cardinal? This question
is still unknown but from the work that has been done so far it looks promising that this
is indeed the case. This is known as the continuum hypothesis, note it is a hypothesis not
a theorem since it has not been proven. Specifically, the continuum hypothesis states that
|R| = ℵ1. That is, |P(N)| = ℵ1, so there is no different size of infinity between |N| = ℵ0 and
|P(N)| = ℵ1. The generalized continuum hypothesis states that 2ℵi = ℵi+1 for all i. This is
equivalent to saying that the sequence of infinite cardinals ℵ0, ℵ1, ℵ2, ℵ3, . . . is |N|, |P(N)|,
|P(P(N))|, |P(P(P(N)))|, So if we assume that the generalized continuum hypothesis
is true then our sequence

|N| < |P(N)| < |P(P(N))| < |P(P(P(N)))| < · · ·

has no sizes of infinity in between those displayed in the sequence. Furthermore we have
examples of specific sets that have sizes ℵ0, ℵ1, ℵ2, ℵ3,

This still does not answer the question of whether or not

|N|, |P(N)|, |P(P(N))|, |P(P(P(N)))|, . . .

is all of them. There is still a chance that there exists a set whose size is larger than all of
these. That is, there could exist a set B in which there is an injection from Ai to B for all
i and yet no bijection between B and any of the Ai. Our next goal is to prove that there is
such a set B. The proof of the existence of such a set relies on the Axion of Choice. Notice
that this is an axiom, not a theorem. That means that we either accept it or we do not.
Most mathematicians accept the Axiom of Choice without hesitation but there are some
who refuse to. We will, of course, accept it. Here are some equivalent statements of the
axiom of choice. These and other equivalent statements can be found in [3] and [4].

Axiom of Choice 1: If A is a disjoint collection of nonempty sets, then there exists a set
B such that for each A in A, B ∩ A is a unit set, that is, contains a single element.

Axiom of Choice 2: For every set X there exists a function f on the collection, P(X)−{∅},
of nonempty subsets of X such that f(A) ∈ A.

The function f in the above statement of the axiom of choice is sometimes called a choice
function because it reaches into a set and chooses an element from that set.

A Crash Course in Undecidability 19

Axiom of Choice 3: If {Ai} is a family of nonempty sets indexed by a nonempty set I,
then Xi∈IAi is nonempty. Where Xi∈IAi represents the (possibly infinite) cartesian product
of the Ai.

Now the existence of arbitrarily large cardinal numbers.

Theorem 13: If C is a set of cardinal numbers, then there exists a cardinal number greater
then each cardinal in C.

Proof. Since each cardinal number is associated with a set of that size we can consider C to
be a disjoint collection of these sets. Using the axiom of choice we can define a representative
set of the form A = {Au | u ∈ C}, where |Au| = u. Clearly, | ∪u∈C Au| ≥ u for each u ∈ C.
Hence |P(∪u∈CAu)| = 2|∪u∈CAu| > | ∪u∈C Au|, and so |P(∪u∈CAu)| is a cardinal number that
exceeds all of the cardinal numbers in C.

So the upshot is that |N|, |P(N)|, |P(P(N))|, |P(P(P(N)))|, . . . is not all of them. We have,

|N| < |P(N)| < |P(P(N))| < |P(P(P(N)))| < · · ·
< |P(∪u∈CAu)| < |P(P(∪u∈CAu))| < · · ·
< p < 2p < 22p < · · · < q < 2q < 22q < · · ·

where p is some cardinal larger than | ∪ P(· · · P(∪u∈CAu) · · ·)| for example the size of the
power set of that union, |P(∪P(· · · P(∪u∈CAu) · · ·))| and q is some cardinal larger than
|Ap ∪A2p ∪A22

p ∪ · · · | for example |P(Ap ∪A2p ∪A22
p ∪ · · ·)|. And this is not by any means

an exhaustive list, at least as far as we know.

A Crash Course in Undecidability 20

References

[1] Theory of Computing: A Gentle Introduction, by Efim Kimber and Carl Smith, Pren-
tice Hall, 2001.

[2] An Introduction to Formal Languages and Automata, Fifth Edition, by Peter Linz,
Jones and Bartlett, 2012.

[3] Set Theory and Logic, by Robert R. Stoll, W. H. Freeman and Company, 1963.

[4] The Foundations of Mathematics, by Raymond L. Wilder, John Wiley & Sons, 1952.

