
COSC 420: High Performance Computing Multi-threading & OpenMP

MPI — Message Passing Interface

– MPI_Abort: Shuts down all processes and returns the specified integer error
code. Not very graceful but works.
MPI_Abort(MPI_COMM_WORLD, 1);
Example: Abort

– MPI_Scan and MPI_Exscan: Performs a reduction, but it keeps the partial
results on the sequential processors. Like a reduce, but leaves the first i
elements combined, on processor i. (VE-V2-58)
Example: Scan

– MPI_Scatterv and MPI_Gatherv: Vector forms for the scatter and
gather routines. (VE-V2-75)
Example: ScatterGatherV
Example: ScatterGatherV2

– MPI_Allgatherv: Vector form for the allgather routine. (VE-V2-76)
Example: ScatterAllGatherV



COSC 420: High Performance Computing Multi-threading & OpenMP

MPI — Message Passing Interface

– MPI_Alltoall: Similar to a collection of simultaneous broadcasts or
simultaneous gathers. This is more of a transposing of data between
processors. It takes the first m items from process 0 to process 0, then then
next m from process 0 to process 1, the next m to process 2, and so on.
Once the data from process 0 is finished it takes the next m from process 1
to process 0, then 1 to 1, 1 to 2, and so on. (VE-V2-67)
Example: AllToAll

– MPI_Probe: Command to request the message status before receiving the
message. Can be used to save memory with the receiving buffer and to keep
from a receiving buffer being too small. (VE-V2-136)
Example: Probe

– MPI_Sendrcv: Pairwise exchange of data. The sendrecv call works great if
every process is paired with precisely one sender and one receiver.
(VE-V2-111)
Example: SendRecv



COSC 420: High Performance Computing Multi-threading & OpenMP

MPI — Message Passing Interface

– MPI_Sendrecv_replace: Like the MPI_Sendrcv except that the buffer
is both input and output. (VE-V2-115)
Example: SendRecv2

– MPI_Allreduce(MPI_IN_PLACE, ...: Overwrites the reduction
variable with the reduction result on all processors. Hence there is no need
for duplicate memory space, can make a difference when reducing large
arrays. (VE-V2-51)
Example: AllReduceInPlace



COSC 420: High Performance Computing Multi-threading & OpenMP

Reference Roadmap

The slide outlines contain references to the main course materials. Not everything has a
reference but nearly all the materials can be found in the following references. The
references are of the form (<text>-<pages>) so (PM-123) means page 123 of An
Introduction to Parallel Programming by Peter S. Pacheco and Matthew Malensek.

– (VE-V1) — The Science of Computing: The Art of High Performance Computing, Vol 1 by Victor
Eijkhout

– (VE-V2) — Parallel Programming in MPI and OpenMP: The Art of HPC, Vol 2 by Victor Eijkhout

– (VE-V3) — Introduction to Scientific Programming in C++17/Fortran2008: The Art of HPC, Vol 3 by
Victor Eijkhout

– (VE-V4) — Tutorials for High Performance Scientific Computing: The Art of HPC, Vol 4 by Victor
Eijkhout

– (PM) — An Introduction to Parallel Programming by Peter S. Pacheco and Matthew Malensek.

– (KH) — Programming Massively Parallel Processors: A Hands-on Approach by David B. Kirk and
Wen-mei W. Hwu.

– (SAB) — High Performance Computing Modern Systems and Practices by Thomas Sterling, Matthew
Anderson, and Maciej Brodowicz.

– (GLS) — Using MPI: Portable Parallel Programming with the Message-Passing Interface by William
Gropp, Ewing Lusk, and Anthony Skjellum.

– (GHTL) — Using Advanced MPI: Modern Features of the Message-Passing Interface by William Gropp,
Torsten Hoefler, Rajeev Thakur, and Ewing Lusk.


