COSC 420: High Performance Computing MPI

MPI — Message Passing Interface

— The nonblocking calls MPI_Isend and MPI_Irecv (where the ‘I stands
for ‘immediate’ or ‘incomplete’) do not wait for their counterpart. They tell
the runtime system here is some data and please send it as follows or here is
some buffer space, and expect such-and-such data to come.
(VE-V2-116-118)

— lIssuing the MPI_TIsend / MPI_Irecv call is sometimes referred to as
posting a send/receive.

— Note from the syntax of the non-blocking receive that it does not have a
status object. This is because the receive is not finished on that line, it only
finishes when the MPI_Wait call is finished and here it returns a status.

— The non-blocking functions return an MPI_Request object which is really
not an object but simply a pointer flag that can be used to track requests.

— The MPI_Wait call is blocking. It also clears the request pointer and sets it
to NULL, specifically, MPT_REQUEST_NULL.

— Note that you can mix blocking and non-blocking send and receive calls.
Example: NBSendRecv



COSC 420: High Performance Computing MPI

MPI — Message Passing Interface

— Some things to be careful about. This mode is getting back to the race
conditions we had with shared memory systems.

- Between the MPI_Irecv and the MPI_Wait you cannot assume that the
receive buffer has the sent value in it. Only after the wait is finished can you
be sure of the buffer value. This may mean, depending on your application,
that you need separate buffers to work with.

- After an MPI_Isend you do not know when the sending buffer has been
transmitted. So altering the contents after the send may alter the sent buffer.
Again, there may be a need for separate buffers.

Example: NBSendRecv2

— You can combine several wait commands if you want control over a number
of sends and receives by using an array of requests. The MPI_Waitall
command will wait (block) until a the requests in the array have been
satisfied. (VE-V2-120)
Example: NBWaitAll



COSC 420: High Performance Computing MPI

MPI — Message Passing Interface

— The MPI_Waitany command will wait (block) until one request in the array
have been satisfied, it will return the index of that satisfied request from the
array. (VE-V2-122)

Example: NBWaitAny
Example: NBWaitAny?2

— Note that the MPI_Recv call can match any of the send routines, and
conversely a message sent with MPI_Send can be received by MPI_Irecv.

— Each of the blocking collective communication commands have a

non-blocking counterpart that produces a request. (VE-V2-83)
Blocking and non-blocking don't match: either all processes call the
non-blocking collectives calls or all call the blocking one. For example the
following is incorrect.
if (rank==0)

MPI_Reduce (&x /* ... %/ root, comm );
else

MPI_Ireduce(&x /x ... */ );



COSC 420: High Performance Computing MPI

MPI — Message Passing Interface

The basic idea behind all of this is that processes can do other work (that is,
calculations that do not depend on the information being communicated
between the processes) while the communication is in progress. This is a bit
dependent on the hardware of your system but most modern processors will
support this processing mode. If processes are doing other work while a
communication is in progress the latency involved with synchronization is
reduced since processors are not idling and waiting for the communication to
finish. Hence the term latency hiding.

— MPI_TIreduce is the non-blocking reduce. Works like the sends and
receives, wait command synchronizes. Syntax is the same, just the addition
of an MPI_Request as the last parameter.

Example: NBArrayReduce

— MPI_TIbcast is the non-blocking form of a broadcast. Syntax is the same,
just the addition of an MPI_Request as the last parameter.
Example: NBPiApproxRSMPIBcast



COSC 420: High Performance Computing MPI

MPI — Message Passing Interface

— MPI_Tallreduce is the non-blocking form of the Allreduce. Syntax is the
same, just the addition of an MPI_Request as the last parameter.
Recall the standard deviation calculation:

i=1 n;

1 & 1Z
a:\' 1 Y (xa = )2 where p==>x
n- i=1

Example: NBAIIReduceStdDev

— MPI_TIscatter is the non-blocking form of scatter. Syntax is the same,
just the addition of an MPI_Request as the last parameter.
Example: NBAIIReduceStdDevSct

— MPI_TIgather is the non-blocking form of gather. Syntax is the same, just
the addition of an MPI_Request as the last parameter.
Example: NBMatVecMult

— The other collective communications as well as the vector forms of these
collective communications are similar in both method and syntax.



COSC 420: High Performance Computing MPI

Reference Roadmap

The slide outlines contain references to the main course materials. Not everything has a
reference but nearly all the materials can be found in the following references. The
references are of the form (<text>-<pages>) so (PM-123) means page 123 of An
Introduction to Parallel Programming by Peter S. Pacheco and Matthew Malensek.

(VE-V1) — The Science of Computing: The Art of High Performance Computing, Vol 1 by Victor
Eijkhout

(VE-V2) — Parallel Programming in MPIl and OpenMP: The Art of HPC, Vol 2 by Victor Eijkhout

(VE-V3) — Introduction to Scientific Programming in C++17/Fortran2008: The Art of HPC, Vol 3 by
Victor Eijkhout

(VE-V4) — Tutorials for High Performance Scientific Computing: The Art of HPC, Vol 4 by Victor
Eijkhout

(PM) — An Introduction to Parallel Programming by Peter S. Pacheco and Matthew Malensek.

(KH) — Programming Massively Parallel Processors: A Hands-on Approach by David B. Kirk and
Wen-mei W. Hwu.

(SAB) — High Performance Computing Modern Systems and Practices by Thomas Sterling, Matthew
Anderson, and Maciej Brodowicz.

(GLS) — Using MPI: Portable Parallel Programming with the Message-Passing Interface by William
Gropp, Ewing Lusk, and Anthony Skjellum.

(GHTL) — Using Advanced MPI: Modern Features of the Message-Passing Interface by William Gropp,
Torsten Hoefler, Rajeev Thakur, and Ewing Lusk.



