
Technology Guides for
Mathematica, Maxima, and

Cryptography Explorer

With an Emphasis on Cryptographic Applications

Dr. Don Spickler

Department of Mathematics & Computer Science
Henson School of Science and Technology

Salisbury University
July 26, 2019



About this Document

About this Document

This document is designed to be a technology supplement for a first course in cryptog-
raphy aimed at the third or fourth year undergraduate mathematics major. The packages
covered are Mathematica, Maxima, and Cryptography Explorer. It is not intended to be a
general reference for Mathematica or Maxima, just a quick guide to calculations found in
cryptographic applications.

When I first wrote the Cryptography Explorer program, I wanted to create a package
that would take most of the tediousness out of classical cryptographic methods while still
leaving the decisions up to the user. As the program has grown, I have tried to keep with
that philosophy, although there are some additions that probably do too much for the user. I
have also never felt that a single software package was good enough for all applications. This
is why I have also incorporated both Mathematica and Maxima into these notes. These are
computer algebra systems that have much more computational abilities and power than does
the Cryptography Explorer program. For classical cryptographic methods, where manipu-
lation is more prevalent than calculation, you will probably find the Cryptography Explorer
program easier to use. When it comes to modern techniques, where there is more calcula-
tion than there is manipulation, a computer algebra system will probably be easier to use.
Although you still may find the Cryptography Explorer program helpful in converting text
to and from the numeric type input necessary for the modern techniques.

Most importantly, learn, experiment, and enjoy.
Don Spickler

2015

Cryptography Notes: Technology Guides ii



About this Document

Mathematica

Mathematica is a commercial computer algebra system, the following description was
taken from the Wolfram site (http://www.wolfram.com/).

For more than 25 years, Mathematica has defined the state of the art in technical
computingand provided the principal computation environment for millions of
innovators, educators, students, and others around the world.

Widely admired for both its technical prowess and elegant ease of use, Math-
ematica provides a single integrated, continually expanding system that covers
the breadth and depth of technical computingand with Mathematica Online, it
is now seamlessly available in the cloud through any web browser, as well as
natively on all modern desktop systems.

You can purchase Mathematica from the Wolfram site,

http://www.wolfram.com/

Maxima

Maxima is an open-source computer algebra system, the following description was taken
from the Maxima project site at sourceforge (http://maxima.sourceforge.net/).

Maxima is a system for the manipulation of symbolic and numerical expressions,
including differentiation, integration, Taylor series, Laplace transforms, ordinary
differential equations, systems of linear equations, polynomials, sets, lists, vec-
tors, matrices and tensors. Maxima yields high precision numerical results by
using exact fractions, arbitrary-precision integers and variable-precision floating-
point numbers. Maxima can plot functions and data in two and three dimensions.

The Maxima source code can be compiled on many systems, including Windows,
Linux, and MacOS X. The source code for all systems and precompiled binaries
for Windows and Linux are available at the SourceForge file manager.

Maxima is a descendant of Macsyma, the legendary computer algebra system
developed in the late 1960s at the Massachusetts Institute of Technology. It is
the only system based on that effort still publicly available and with an active
user community, thanks to its open source nature. Macsyma was revolutionary in
its day, and many later systems, such as Maple and Mathematica, were inspired
by it.

The Maxima branch of Macsyma was maintained by William Schelter from 1982
until he passed away in 2001. In 1998 he obtained permission to release the
source code under the GNU General Public License (GPL). It was his efforts and
skill which have made the survival of Maxima possible, and we are very grateful
to him for volunteering his time and expert knowledge to keep the original DOE
Macsyma code alive and well. Since his death, a group of users and developers
has formed to bring Maxima to a wider audience.

Cryptography Notes: Technology Guides iii

http://www.wolfram.com/
http://www.wolfram.com/
http://maxima.sourceforge.net/


About this Document

Maxima is updated very frequently, to fix bugs and improve the code and the
documentation. We welcome suggestions and contributions from the community
of Maxima users. Most discussion is conducted on the Maxima mailing list.

You can download Maxima from the Maxima project site at sourceforge,

http://maxima.sourceforge.net/

Cryptography Explorer

Cryptography Explorer is a tool that I developed for the investigation of cryptography
and cryptanalysis. It was written mainly to ease the investigation of classical cryptography
methods but it also contains features for modern ciphers as well as tools for investigating
integer factorization and discrete logarithm calculations.

Cryptography Explorer can be downloaded from my website at,

http://facultyfp.salisbury.edu/despickler/personal/
CryptographyExplorer.html

Edition
July 26, 2019

Publisher
Don Spickler
Department of Mathematics and Computer Science
Salisbury University
1101 Camden Ave.
Salisbury, Maryland 21801
USA

Copyright © 2015–2019 Don Spickler
Licensed to the public under Creative Commons
Attribution-NonCommercial 4.0 International License

Cryptography Notes: Technology Guides iv

http://maxima.sourceforge.net/
http://facultyfp.salisbury.edu/despickler/personal/CryptographyExplorer.html
http://facultyfp.salisbury.edu/despickler/personal/CryptographyExplorer.html


Contents

1 Introduction to Mathematica 1
1.1 What is Mathematica? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 The User Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Basic Calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3.1 Numeric Calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3.2 Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3.3 Execution Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.4 Defining Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.5 Some Discrete Mathematics & Number Theory Commands . . . . . . . . . . 14

1.5.1 Modulus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.5.2 Power Calculations with a Modulus . . . . . . . . . . . . . . . . . . . 14
1.5.3 Greatest Common Divisor . . . . . . . . . . . . . . . . . . . . . . . . 15
1.5.4 Extended Greatest Common Divisor . . . . . . . . . . . . . . . . . . 15
1.5.5 Least Common Multiple . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.5.6 Chinese Remainder Theorem . . . . . . . . . . . . . . . . . . . . . . . 16
1.5.7 Functions for Primes . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.5.8 Jacobi and Legendre Symbols . . . . . . . . . . . . . . . . . . . . . . 18
1.5.9 Continued Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.5.10 Solving Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.5.11 Factoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.5.12 Factoring Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . 24
1.5.13 Euler Totient Function . . . . . . . . . . . . . . . . . . . . . . . . . . 24
1.5.14 Primitive Roots and Element Orders . . . . . . . . . . . . . . . . . . 25
1.5.15 Discrete Logarithms . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.6 Vectors and Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
1.6.1 Defining a Matrix and a Vector . . . . . . . . . . . . . . . . . . . . . 27
1.6.2 Matrix Arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
1.6.3 Matrix Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
1.6.4 Modular Matrix Operations . . . . . . . . . . . . . . . . . . . . . . . 34

1.7 Elliptic Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
1.7.1 Points on an Elliptic Curve . . . . . . . . . . . . . . . . . . . . . . . 37
1.7.2 Arithmetic on an Elliptic Curve . . . . . . . . . . . . . . . . . . . . . 41

1.8 CryptDSEC.nb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

v



CONTENTS

1.8.1 CryptDSEC.nb Code . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2 Introduction to Maxima 48
2.1 What is Maxima? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.2 The User Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.3 Basic Calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.3.1 Numeric Calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
2.3.2 Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
2.3.3 Execution Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

2.4 Defining Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
2.5 Some Discrete Mathematics & Number Theory Commands . . . . . . . . . . 61

2.5.1 Modulus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
2.5.2 Power Calculations with a Modulus . . . . . . . . . . . . . . . . . . . 61
2.5.3 Inverse Calculations with a Modulus . . . . . . . . . . . . . . . . . . 62
2.5.4 Greatest Common Divisor . . . . . . . . . . . . . . . . . . . . . . . . 62
2.5.5 Extended Greatest Common Divisor . . . . . . . . . . . . . . . . . . 63
2.5.6 Greatest Common Divisor of Several Numbers . . . . . . . . . . . . . 63
2.5.7 Least Common Multiple . . . . . . . . . . . . . . . . . . . . . . . . . 64
2.5.8 Chinese Remainder Theorem . . . . . . . . . . . . . . . . . . . . . . . 64
2.5.9 Functions for Primes . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
2.5.10 Jacobi and Legendre Symbols . . . . . . . . . . . . . . . . . . . . . . 66
2.5.11 Continued Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
2.5.12 Solving Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
2.5.13 Modular Square Roots and Cube Roots . . . . . . . . . . . . . . . . . 72
2.5.14 Factoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
2.5.15 Factoring Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . 73
2.5.16 Euler Totient Function . . . . . . . . . . . . . . . . . . . . . . . . . . 74
2.5.17 Primitive Roots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
2.5.18 Discrete Logarithms . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
2.5.19 Order of an Element . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

2.6 Vectors and Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
2.6.1 Defining a Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
2.6.2 Matrix Arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
2.6.3 Matrix Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
2.6.4 Modular Matrix Operations . . . . . . . . . . . . . . . . . . . . . . . 88

2.7 Elliptic Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
2.7.1 Points on an Elliptic Curve . . . . . . . . . . . . . . . . . . . . . . . 98
2.7.2 Arithmetic on an Elliptic Curve . . . . . . . . . . . . . . . . . . . . . 101

2.8 CryptDS.mac . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
2.8.1 CryptDS.mac Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

Cryptography Notes: Technology Guides vi



CONTENTS

3 Introduction to Cryptography Explorer 108
3.1 What is Cryptography Explorer? . . . . . . . . . . . . . . . . . . . . . . . . 108
3.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
3.3 Ciphers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

3.3.1 Monoalphabetic Substitution . . . . . . . . . . . . . . . . . . . . . . 112
3.3.2 Vigenère . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
3.3.3 Scytale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
3.3.4 Rail Fence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
3.3.5 Columnar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
3.3.6 Two Square . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
3.3.7 Four Square . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
3.3.8 Playfair . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
3.3.9 ADFGX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
3.3.10 ADFGVX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
3.3.11 Linear Feedback Shift Register (LFSR) . . . . . . . . . . . . . . . . . 142
3.3.12 Hill . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
3.3.13 Enigma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
3.3.14 RSA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
3.3.15 ElGamal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

3.4 Text and Stream Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
3.4.1 Frequency Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
3.4.2 Hill Climb Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
3.4.3 Kasiski’s Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
3.4.4 Coincidence Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
3.4.5 Dot Product Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
3.4.6 Substring Compare . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
3.4.7 LFSR Cipher Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 162

3.5 Text Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
3.5.1 Text Extractor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
3.5.2 Text Combiner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
3.5.3 Text Converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
3.5.4 Notepad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
3.5.5 Gridpad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
3.5.6 User Defined Language Creator . . . . . . . . . . . . . . . . . . . . . 175

3.6 Calculators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
3.6.1 Integer Calculator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
3.6.2 Modular Matrix Calculator . . . . . . . . . . . . . . . . . . . . . . . 181
3.6.3 Elliptic Curve Calculator . . . . . . . . . . . . . . . . . . . . . . . . . 184
3.6.4 Random Number Generator . . . . . . . . . . . . . . . . . . . . . . . 187

3.7 Factoring Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
3.7.1 Brute Force Factoring . . . . . . . . . . . . . . . . . . . . . . . . . . 188
3.7.2 Fermat Factoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
3.7.3 Pollard p− 1 Factoring . . . . . . . . . . . . . . . . . . . . . . . . . . 191

Cryptography Notes: Technology Guides vii



CONTENTS

3.7.4 Williams P + 1 Factoring . . . . . . . . . . . . . . . . . . . . . . . . 193
3.7.5 Pollard Rho Factoring . . . . . . . . . . . . . . . . . . . . . . . . . . 194
3.7.6 Brent’s Method Factoring . . . . . . . . . . . . . . . . . . . . . . . . 196
3.7.7 Quadratic Sieve Factoring . . . . . . . . . . . . . . . . . . . . . . . . 198
3.7.8 Multiple Polynomial Quadratic Sieve Factoring . . . . . . . . . . . . 202
3.7.9 Lenstra’s Elliptic Curve Factoring . . . . . . . . . . . . . . . . . . . . 205
3.7.10 Multiple Factoring Methods . . . . . . . . . . . . . . . . . . . . . . . 208

3.8 Discrete Logarithm Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
3.8.1 Brute Force Discrete Logarithm . . . . . . . . . . . . . . . . . . . . . 212
3.8.2 Pohlig-Hellman Discrete Logarithm . . . . . . . . . . . . . . . . . . . 213
3.8.3 Pollard Rho Discrete Logarithm . . . . . . . . . . . . . . . . . . . . . 215
3.8.4 Pohlig-Hellman with Pollard Rho Discrete Logarithm . . . . . . . . . 216
3.8.5 Index Calculus Discrete Logarithm . . . . . . . . . . . . . . . . . . . 218
3.8.6 Variant of the Index Calculus Discrete Logarithm . . . . . . . . . . . 219

Bibliography 222

Index 223

Cryptography Notes: Technology Guides viii



Chapter 1

Introduction to Mathematica

1.1 What is Mathematica?

You probably already know this by this time in your mathematical careers, but if you are
not familiar with Mathematica. Mathematica is a commercial computer algebra system.
Computer algebra systems are programs that are capable of doing exact mathematical com-
putations in a wide range of mathematical subjects. That is, they can solve equations pro-
ducing exact answers as opposed to giving decimal approximations. They can do symbolic
algebra, trigonometry, calculus, differential equations, and so on. Some computer algebra
systems have very specific uses, such as finite group theory, while others are built to be more
comprehensive. Mathematica is one of the most comprehensive computer algebra systems
on the market today.

The following description was taken from the Wolfram site (http://www.wolfram.com/)
.

For more than 25 years, Mathematica has defined the state of the art in technical
computingand provided the principal computation environment for millions of
innovators, educators, students, and others around the world.

Widely admired for both its technical prowess and elegant ease of use, Math-
ematica provides a single integrated, continually expanding system that covers
the breadth and depth of technical computingand with Mathematica Online, it
is now seamlessly available in the cloud through any web browser, as well as
natively on all modern desktop systems.

You can purchase Mathematica from the Wolfram site,[4]

http://www.wolfram.com/

This introduction to Mathematica is not designed to be a general introduction to the
software package. There are far better resources for that online than I could ever hope to
write. Here we simply concentrate on what you need to do the cryptography exercises and
examples in this set of notes.

1

http://www.wolfram.com/
http://www.wolfram.com/


CHAPTER 1. INTRODUCTION TO MATHEMATICA

As with all computer algebra systems, there are numerous ways to input your calculations
to obtain the desired results, some methods are slicker than others. The downside of the
slick methods is that they are usually hard to read and unless you are already familiar with
the ins and outs of the system it is usually unclear what is happening. Since we are assuming
that you have a limited exposure to Mathematica, we do not always take the slickest route
to produce the needed calculation. In many cases we will break a calculation down into
several steps, where is could be done in a single command. This is done for readability and
clarity of the operation. As you become more acquainted with Mathematica you will see
other equivalent methods to those in this set of notes.

If you are familiar with Matheiatica you probably already know everything in this intro-
duction. In this case you may want to simply skim over these pages and read the unfamiliar
sections.

1.2 The User Interface

Most computer algebra systems have very similar interfaces. There is usually a graphi-
cal interface for command input that is where the user enters their calculation commands
and a calculation engine in the background, called the kernel in Mathematica, where the
calculations are performed.

Figure 1.1: User Interface to Mathematica 10.0

When the user types in a command and sends it for calculation, the command is trans-
ferred to the kernel, calculated there, and the result is transferred back to the graphical
interface. The kernel operations are hidden from the user and you will probably never need
to deal with the Mathematica kernel but the reason we are going into this is that on occasions

Cryptography Notes: Technology Guides 2



CHAPTER 1. INTRODUCTION TO MATHEMATICA

something, usually external to Mathematica, causes the interface to lose the communication
link with the kernel. This happens rarely but if you notice that Mathematica is not doing
the calculations you send it and you know you are using the correct syntax then you may
have lost the kernel link. In these cases, there is a menu option, under the evaluation menu,
to start the kernel. Selecting this should reestablish the link for you. Another option is to
close Mathematica and restart it, the good old reboot solution.

Figure 1.2: User Interface to Mathematica 10.0 with Commands

As you can see from the above image, the In lines are what the user has input into
Mathematica and the Out lines are Mathematica’s responses to the inputs. On the first line
we simply asked Mathematica to factor a number for us. The Mathematica command for
this is FactorInteger followed by square brackets containing the number to be factored.

In[1]:= FactorInteger [1 715 693 756 017 365 017 611 ]

Out[1]= {{1163, 1}, {15 227, 1}, {173 291, 1}, {559 074 521, 1}}

This in and out tracking comes in handy when you want to use a previous input or output.
The % will automatically take the last output that was done. Be careful here, this is not
always the output right above the new input. For example, if you go up several commands
and reevaluate a command, that is the last output. You can also use the Out[1] notation for
output number 1, Out[2] for output number 2, and so on. You will notice that if you redo
a command, it will be renumbered with a different input and output number, the original
input and output number still have the same values.

In[1]:= D[Tan[x^3], x]

Out[1]= 3 x2 Secx32

Cryptography Notes: Technology Guides 3



CHAPTER 1. INTRODUCTION TO MATHEMATICA

In[2]:= D[%, x]

Out[2]= 6 x Secx32 + 18 x4 Secx32 Tanx3

In[3]:= D[Out[1], x]

Out[3]= 6 x Secx32 + 18 x4 Secx32 Tanx3

Then if we reevaluate the first input it is labeled number 4 but then if we add a new
entry the references number 1 (Out[1]+7) it uses the first output from the session.

In[4]:= D[Tan[x^3], x]

Out[4]= 3 x2 Secx32

In[2]:= D[%, x]

Out[2]= 6 x Secx32 + 18 x4 Secx32 Tanx3

In[3]:= D[Out[1], x]

Out[3]= 6 x Secx32 + 18 x4 Secx32 Tanx3

In[5]:= Out[1] + 7

Out[5]= 7 + 3 x2 Secx32

It is better practice to assign an output to a variable and use the variable name when
needed, for example,

In[1]:= d = D[Tan[x^3], x]

Out[1]= 3 x2 Secx32

In[2]:= D[d, x]

Out[2]= 6 x Secx32 + 18 x4 Secx32 Tanx3

In[3]:= d + 7

Out[3]= 7 + 3 x2 Secx32

We will discuss assigning variables in more detail in the next section.
All Mathematica commands begin with a capital letter and multi-word commands usually

capitalize each word. When applying a command to some input, the input is surrounded
by square brackets, not parentheses, like we would write f(x) to apply the function f to
the input x. In Mathematica this would be f[x]. In Mathematica parentheses are used as
grouping symbols for expressions, square brackets are for command or function input and
curly brackets are to delimit lists, which includes matrices since these are stored as lists of
lists.

Once you have input a command you send it to the kernel for evaluation by selecting
Shift + Enter from the keyboard. Also, if your keyboard has a keypad, then simply selecting
the keypad Enter (with no Shift) will work as well. When you do this, there may be a slight

Cryptography Notes: Technology Guides 4



CHAPTER 1. INTRODUCTION TO MATHEMATICA

Table 1.1: Brackets in Mathematica

Bracket Usage
( ) Grouping
[ ] Command and Function Input
{ } Lists and Matrices

to a long pause while the calculation is being done and then the result will be displayed in
the out line. If a calculation is taking too long to complete you can abort the calculation
either from the Evaluation menu or by typing Alt+. from the keyboard.

Figure 1.3: Mathematica Palette

As we pointed out above, computer alge-
bra systems do exact arithmetic, unless other-
wise told. So the user can easily input some-
thing into the computer algebra system that
the computer will not be able to handle or not
able to handle in a reasonable amount of time.
For example, asking the computer to calculate
1000000! or asking it to factor the 600 digit
semiprime that Amazon uses for customer pur-
chases. So if Mathematica is taking a very long
time to do a calculation, make sure you did not
inadvertently ask it a bad question, and if you
did, abort the calculation.

Mathematica also has a command assistant
interface called Palettes . There are several dif-
ferent palettes the user can choose form and
there is a way to customize your own palettes. If
you find these palette systems to be useful then
by all means use them. These notes will be con-
centrating on the commands you need to aide
you in cryptography calculations, so we will not
be using Mathematica’s palette systems. Most
of the palette operations are self-explanatory
and there are numerous guides to using them on
the Internet if you are interested. The palette
system is a nice way to get started with Math-
ematica, to learn some of its functions and syn-
tax. Once you are familiar with Mathematica
you will probably find that typing in the com-
mands is quicker.

If you opt to type in the command you will
see Mathematica’s command completion inter-

Cryptography Notes: Technology Guides 5



CHAPTER 1. INTRODUCTION TO MATHEMATICA

face. While you are typing a command, a list will appear below what you are typing as
suggestions of the command you want. You can select the command you want from the list
by either using the mouse or by using the arrow keys to highlight the command and then
use the Tab key to select the command.

Figure 1.4: User Interface to Mathematica 10.0 Command Completion Interface

There are a couple other very nice features to Mathematica we would like to mention
before going into command specifics. One of these is Mathematica’s user interface is the
color coding it uses. Notice in the above screen shot The Fac that is a partial command is in
blue. This means that Mathematica does not have a command Fac, but when we finish out
the command FactorInteger the font turns to black, meaning that Matheamtica does have
a FactorInteger command. So if you are not getting results from Mathematica check the
color of your command. Remember that all Mathematica commands begin with a capital
letter and Mathematica is case-sensitive. Along the lines of colors, notice that the x’s in the
derivative command in the screen shot are bluish green. This means that Mathematica is
considering them to be variables. If you remove the last x the others will turn blue, meaning
that Mathematica does not know what to do with them.

Another simple feature that I use all of the time is the zoom function in the lower right
of the graphical window. It is a simple selection box that allows you to increase and decrease
the font size of the window quickly.

The other very nice feature we would like to mention is Mathematica’s help system.
Admittedly most help systems for software packages are not that great, which is why most
people will Google a question about software usage before checking out the software’s help
system. Mathematica is an exception to this rule, it has a very good help system. The
built-in searching system is very efficient, there are examples for each command, nifty things
you can do with the command, options that can be used with the command, and a section

Cryptography Notes: Technology Guides 6



CHAPTER 1. INTRODUCTION TO MATHEMATICA

on possible issues that alert you to things you may need to be careful about when using the
command. The neatest thing, in my opinion, is that the help system examples are dynamic
and user changeable. The examples are written in a Mathematica notebook, so you can
change and execute the examples inside the help system and do not need to copy and paste
the example into another notebook.

1.3 Basic Calculations

1.3.1 Numeric Calculations

When starting out with any computer algebra system it is good to treat it simply as a
fancy calculator, just to get the feel for how it works and basic expression format. Addition,
subtraction, multiplication, division and powers are done with the standard mathematics
symbols +-*/ˆ as you would expect. There are several basic numerical types used in
Mathematica but most of the time we will be working in either exact mode or approximate
mode.

Computer algebra systems use exact mode whenever possible, this is how they are con-
structed and frankly what their main purpose is. When calculations are done in exact mode
the outputs are integers, rational numbers or expressions involving them. Approximate mode
is when we have decimal approximations as our output. In the example below, inputs 1–4 are
all in exact mode, note the

√
2 and log 25. Since these numbers are irrational Mathematica

will not approximate them. Inputs 5 and 6 produce approximate outputs since we used a
decimal in the input expression.

In[1]:= 29 147 + 789 273

Out[1]= 818 420

In[2]:= 2^92

Out[2]= 4 951 760 157 141 521 099 596 496 896

In[3]:= 2^(1 / 2)

Out[3]= 2

In[4]:= Log[25]

Out[4]= Log[25]

In[5]:= 2.0^(1 / 2)

Out[5]= 1.41421

In[6]:= Log[25.0]

Out[6]= 3.21888

Cryptography Notes: Technology Guides 7



CHAPTER 1. INTRODUCTION TO MATHEMATICA

So the easiest way to force Mathematica into approximation mode is to use decimal num-
bers in the expression. You can also use a couple commands to convert an exact expression
into an approximate expression. The N command will convert an exact expression to decimal
form and it has the option to change the number of displayed decimal places. In cryptogra-
phy, we usually deal primarily with integers so there will be few times when we need to get
approximations. Nonetheless, here are some examples,

In[1]:= 2^(1 / 2)

Out[1]= 2

In[2]:= N[2^(1 / 2)]

Out[2]= 1.41421

In[3]:= N[2^(1 / 2), 50]

Out[3]= 1.4142135623730950488016887242096980785696718753769

In[4]:= N[2^(1 / 2), 500]

Out[4]= 1.414213562373095048801688724209698078569671875376948073176679

7379907324784621070388503875343276415727350138462309122970249

2483605585073721264412149709993583141322266592750559275579995

0501152782060571470109559971605970274534596862014728517418640

8891986095523292304843087143214508397626036279952514079896872

5339654633180882964062061525835239505474575028775996172983557

5220337531857011354374603408498847160386899970699004815030544

0277903164542478230684929369186215805784631115966687130130156

185689872372

In[5]:= 2^(1 / 2) // N

Out[5]= 1.41421

From the above examples you can see that using the N command alone gives the default
number of decimal places in the approximation. If we add a number option then Mathematica
displays that number of decimal places. The final command is an example of a Mathematica
“pipe”. That is, the result of what is before the // is piped into the command after the //.
So in input number 5, we are taking the exact value of

√
2 and then asking for a decimal

representation of it. These pipes come in handy when you want a quick way to change the
format of the output.

Cryptography Notes: Technology Guides 8



CHAPTER 1. INTRODUCTION TO MATHEMATICA

1.3.2 Algebra

Computer algebra systems will also do algebra, imagine that. So they will do computations
with variables just as we would. One thing to be careful with here is assigning values to
variables. Once a variable is assigned a value it will replace the variable with that value in
all expressions until the variable is reset. There are two basic ways to do assignments in
Mathematica, the equal sign, =, for immediate assignments and the colon equal, := for a
delayed assignment. The difference between the two is as follows,

• lhs=rhs — This is an immediate assignment, the rhs is evaluated at the time of
assignment.

• lhs:=rhs — This is a delayed assignment, the rhs is reevaluated every time it is
used.

Once an assignment is made then any expression with the lhs in it is evaluated as if the
lhs is the rhs. Care must be taken when variables are assigned values, since as long as the
assignment is current, the substitution will be made. From time to time you will want to
switch back to a variable from an assignment. There are a couple ways to do this. Say we
defined x to be some numeric value, to reset it to x, we could either use the command x=.
or Clear[x]. The following is a few short examples of immediate assignment.

In[1]:= x^2 + 3 x + 7

Out[1]= 7 + 3 x + x2

In[2]:= x = 5

Out[2]= 5

In[3]:= x^2 + 3 x + 7

Out[3]= 47

In[4]:= x =.

In[5]:= x^2 + 3 x + 7

Out[5]= 7 + 3 x + x2

In[6]:= x = 15

Out[6]= 15

In[7]:= x^2 + 3 x + 7

Out[7]= 277

In[8]:= Clear[x]

Cryptography Notes: Technology Guides 9



CHAPTER 1. INTRODUCTION TO MATHEMATICA

In[9]:= x^2 + 3 x + 7

Out[9]= 7 + 3 x + x2

One thing that the above examples cannot show you is the color changes that happened
when the variable x was set to a value. When x was set to a value all the x’s in the notebook
turned to black, signifying that it was assigned to a value.

Also note that for multiplication we can use the * symbol, but juxtaposition is also
supported in Mathematica. This is both a good thing and a bad thing. While it makes
typing a bit easier, it can lead to errors. Consider the following example,

In[1]:= x^2 + 3 x + y^3 - y + xy

Out[1]= 3 x + x2 + xy - y + y3

In[2]:= x = 5

Out[2]= 5

In[3]:= y = 3

Out[3]= 3

In[4]:= x^2 + 3 x + y^3 - y + xy

Out[4]= 64 + xy

In[5]:= x y

Out[5]= 15

Expressions numbers 1 and 4 were typed in without using any spaces. While the output
of number 1 looks as we would expect but number 4 is a bit of a surprise. We got an xy
and not an extra 15 added to our result. The reason for this is that with no space between
the x and the y, Mathematica thought that this was a new variable, named xy, and not the
product of x and y. For input number 5, we placed a space between the x and the y, and
got the desired result.

Also note that expressions are automatically simplified, that is the easy simplifications
are done automatically. More complex expressions will not be simplified until you give Math-
ematica a command to do so. In Mathematica there are two basic simplification commands,
Simplify and FullSimplify. The FullSimplify command tends to be used with
more difficult expressions, for the computations in this set of notes the Simplify command
should be sufficient. There are many options that can be used with both but we should only
need the basic command.

In[1]:= Sin[x]^2 + Cos[x]^2

Out[1]= Cos[x]2 + Sin[x]2

Cryptography Notes: Technology Guides 10



CHAPTER 1. INTRODUCTION TO MATHEMATICA

In[2]:= Simplify[%]

Out[2]= 1

1.3.3 Execution Timing

In cryptography, and other computationally intensive areas in mathematics and computing,
one wants to know how different algorithms that accomplish the same task stack up against
each other. Which algorithm factors integers the fastest or finds the discrete logarithm
fastest? Or better questions are which algorithms are fastest in which situations? The way
this is usually done, theoretically, is by counting the number of mathematical operations
that need to be done for the algorithm to come up with a solution. We tend to look at best,
average, and worst case scenarios and compare them.

Another method is to do empirical testing. Run several examples using each algorithm
and compare the timings. With computer algebra systems, many complex tasks, such as
factoring and finding discrete logarithms will implement several different algorithms that
work together, and even in parallel. So separating them is sometimes difficult. Nonetheless,
we would still like to know execution times for processes run on Mathematica.

In Mathematica, there are two basic timing functions, Timing and AbsoluteTiming.
With both, you simply put the command around the function you wish to time and the
output is a list where the first entry is the execution time and the second is the output of
the command. The difference between the two commands is that the Timing command
only tracks the CPU time used, whereas the AbsoluteTiming command tracks the total
elapsed time. So outside operations, such a other programs running or data transfers form
the internet could affect the absolute timing.

In[5]:= Timing[

FactorInteger [

66 473 167 017 650 137 560 371 563 761 037 563 451 364 913 758 731 751 

334 111]]

Out[5]= {0.343202, {{3, 1}, {67, 1}, {1 400 964 127, 1},

{236 060 486 736 254 900 318 008 190 491 187 456 774 869 150 393 , 1}}}

In[6]:= AbsoluteTiming [

FactorInteger [

66 473 167 017 650 137 560 371 563 761 037 563 451 364 913 758 731 751 

334 111]]

Out[6]= {0.358801, {{3, 1}, {67, 1}, {1 400 964 127, 1},

{236 060 486 736 254 900 318 008 190 491 187 456 774 869 150 393 , 1}}}

Cryptography Notes: Technology Guides 11



CHAPTER 1. INTRODUCTION TO MATHEMATICA

1.4 Defining Functions

Mathematica has hundreds of built-in functions, trigonometric, logarithmic, hyperbolic, com-
plex valued, exponential, combinatorial, . . . . In cryptography, we do not tend to need tran-
scendental functions too often and we will look at a few discrete mathematics and number
theory functions in the following sections and throughout the body of these notes. There
will be times when you will want to define your own functions, this tends to make typing
and expression syntax easier when you are dealing with longer expressions. In Mathematica,
to define a function, start with the function name, a list of variables (each followed by an
underscore) in square brackets, := and then the expression. For example, to define the
function f(x) = x2 − 3x+ 5,

In[1]:= f[x_] := x ^2 - 3 x + 5

In[2]:= f[t]

Out[2]= 5 - 3 t + t2

In[3]:= f[5]

Out[3]= 15

In[4]:= f[-x]

Out[4]= 5 + 3 x + x2

In[5]:= f[x + h]

Out[5]= 5 - 3 (h + x) + (h + x)2

After the function is defined, you can evaluate the function at values, or expressions, by
placing the value or expression in the parentheses, just like we would do in mathematics.
Functions can be defined on more than one variable, for example,

In[1]:= g[x_, y_] := x ^2 - y ^2

In[2]:= g[2, 3]

Out[2]= -5

In[3]:= g[t, 7]

Out[3]= -49 + t2

We will discuss Mathematica lists later in these notes but will give a quick example here.
Most computer algebra systems store and manipulate information in lists, this is the basis to
what are called functional programming languages, like LISP. So computer algebra systems
tend to work very efficiently on lists. In Mathematica, a list is a set of expressions separated
by commas and delimited by curly brackets. The following is an example of how you can

Cryptography Notes: Technology Guides 12



CHAPTER 1. INTRODUCTION TO MATHEMATICA

evaluate a function on a list.

In[1]:= g[x_, y_] := x ^2 - y ^2

In[2]:= g[{1, 2, 3, 4}, t]

Out[2]= 1 - t2, 4 - t2, 9 - t2, 16 - t2

In[3]:= g[{1, 2, 3, 4}, {5, 6, 7, 8}]

Out[3]= {-24, -32, -40, -48}

In[4]:= g[{1, 2, 3, 4}, {5, 6, 7}]

Thread::tdlen : Objects of unequal length in {1, 4, 9, 16} + {-25, -36, -49} cannot be combined. 

Out[4]= {-25, -36, -49} + {1, 4, 9, 16}

Functions can also be composed with each other and themselves. Furthermore, you can
define a function using other function definitions.

In[1]:= f[x_] := Sqrt[x + 1]

In[2]:= f[x]

Out[2]= 1 + x

In[3]:= f[f[x]]

Out[3]= 1 + 1 + x

In[4]:= f[f[f[f[x]]]]

Out[4]= 1 + 1 + 1 + 1 + x

In[5]:= g[x_] := Sin[x]

In[6]:= f[g[x]]

Out[6]= 1 + Sin[x]

In[7]:= g[f[x]]

Out[7]= Sin 1 + x 

In[8]:= h[x_] := f[f[f[x]]]

Cryptography Notes: Technology Guides 13



CHAPTER 1. INTRODUCTION TO MATHEMATICA

In[9]:= h[x]

Out[9]= 1 + 1 + 1 + x

As with any computer program you need to be careful what you tell it to do. It will do
exactly what you tell it. In the below string of examples we define a function f(x) and then
we define the value of x to be 5. Note that in line 3, f(x) is now the expression defined at
5, since x is equal to 5.

In[1]:= f[x_] := Sqrt[x + 1]

In[2]:= x = 5

Out[2]= 5

In[3]:= f[x]

Out[3]= 6

1.5 Some Discrete Mathematics & Number Theory Com-

mands

In this section we will look at a few commands that are related to the number theory and
discrete mathematics that we tend to encounter most in the area of cryptography.

1.5.1 Modulus

To compute a simple modulus, a (mod n) use the Mod[a, n] command.

In[1]:= Mod[35, 21]

Out[1]= 14

In[2]:= Mod[-123, 29]

Out[2]= 22

1.5.2 Power Calculations with a Modulus

Frequently we need to raise a number to a very large power modulo another number, that is,
calculate ab (mod n), where b could be a very large number. The way not to do this is with
the command Mod[aˆb, n]. Although this will work fine for small values of a and b, when
b gets large the calculation may become too large for your, or anyone’s, computer to handle.
The reason is that with this command, the program will first calculate ab and then take

Cryptography Notes: Technology Guides 14



CHAPTER 1. INTRODUCTION TO MATHEMATICA

the result modulo n. If b is sufficiently large, the calculation of ab could produce a number
that is too large to fit in your computer’s memory. For this reason, a better computational
method was devised. The command in Mathematica for this is, PowerMod[a, b, n].
The exponentiation algorithm used here is very fast, it raises a to the b power by successive
squares and multiplications, each taken modulo n at each stage so that the intermediate
calculations do not get too large.

In[1]:= PowerMod [5, 12 345, 98 765]

Out[1]= 82 160

In[2]:= PowerMod [12 345, 67 890, 1 000 000 000]

Out[2]= 931 640 625

The power modulus command will also find inverses of numbers modulo another, as long
as it exists, that is, a−1 (mod n). The command PowerMod[a, -1, n] will find the
inverse of a modulo n if it exists. If the inverse does not exist then this command will
return an error. The algorithm used here is the extended euclidean algorithm, followed by a
modulus if needed.

In[3]:= PowerMod [12 345, -1, 1 000 000 001]

Out[3]= 349 048 198

1.5.3 Greatest Common Divisor

To calculate the greatest common divisor of two, or more, numbers in Mathematica simply
use the GCD[a, b, c, ..., n] command. The algorithm used here is the euclidean
algorithm

In[1]:= GCD[23, 57]

Out[1]= 1

In[2]:= GCD[467 030, 31 817 075]

Out[2]= 5

1.5.4 Extended Greatest Common Divisor

We know that if d = gcd(a, b), then there exists numbers r and s such that ar + bs = d. To
calculate the numbers r, s, and d we can use the ExtendedGCD[a, b] command. This
will return the list {r, {s, d}}. The algorithm used here is the extended euclidean algorithm.
This theorem can be extended to more than two numbers, as the last example illustrates.

In[1]:= ExtendedGCD[23, 57]

Out[1]= {1, {5, -2}}

Cryptography Notes: Technology Guides 15



CHAPTER 1. INTRODUCTION TO MATHEMATICA

In[2]:= 5 * 23 - 2 * 57

Out[2]= 1

In[3]:= ExtendedGCD[467 030, 31 817 075]

Out[3]= {5, {866 636, -12 721}}

In[4]:= 866 636 * 467 030 - 12 721 * 31 817 075

Out[4]= 5

In[5]:= ExtendedGCD[2364, 2748, 28 312]

Out[5]= {4, {-219 387, 188 720, 1}}

In[6]:= -219 387 * 2364 + 2748 * 188 720 + 28 312

Out[6]= 4

1.5.5 Least Common Multiple

To calculate the least common multiple of several numbers use the LCM[a, b, c, ...]
command.

In[1]:= LCM[5, 15, 35]

Out[1]= 105

1.5.6 Chinese Remainder Theorem

The Chinese Remainder Theorem is really an algorithm for solving a system of congruences,

x = r1 (mod m1)

x = r2 (mod m2)

x = r3 (mod m3)

...

x = rn (mod mn)

where the set {m1,m2, . . . ,mn} are positive and pairwise coprime integers. The Mathematica
command to solve this system is ChineseRemainder[{r_1,..., r_n}, {m_1,..., m_n}].
Note that the residues and the moduli are in lists and the corresponding entries define each
of the congruences. If the set of moduli are coprime the Chinese Remainder Theorem guar-
antees a solution. If, on the other hand, moduli are not coprime then there may or may
not be a solution. If Mathematica cannot find a solution to the system it will return the
command as output.

Cryptography Notes: Technology Guides 16



CHAPTER 1. INTRODUCTION TO MATHEMATICA

In[1]:= ChineseRemainder [{1, 2}, {5, 7}]

Out[1]= 16

In[2]:= ChineseRemainder [{1, 2, 3, 4}, {5, 7, 9, 11}]

Out[2]= 1731

1.5.7 Functions for Primes

There are numerous functions in Mathematica for working with prime numbers. The first
we will look at is primality testing. The Mathematica command to test if a number is prime
(or probably prime) is PrimeQ[n]. If PrimeQ[n] returns false, n is a composite number
and if it returns true, n is a prime number with very high probability.

In[1]:= PrimeQ[17]

Out[1]= True

In[2]:= PrimeQ[620 743 261 954 923 659 141 ]

Out[2]= True

In[3]:= PrimeQ[4 294 967 297]

Out[3]= False

Mathematica also has a function for finding the next probable prime. This function comes
in two forms, NextPrime[n] and NextPrime[n, k]. The NextPrime[n] function
finds the next prime greater than n and the NextPrime[n, k] function finds the kth

prime above n. This second form has the added bonus that if k = −1 the function will
return the next prime smaller than n.

In[1]:= NextPrime[19]

Out[1]= 23

In[2]:= NextPrime[39 196 736 173 617 367 361 073 651 769 157 617 369 164 ]

Out[2]= 39 196 736 173 617 367 361 073 651 769 157 617 369 187

In[3]:= NextPrime[19, 5]

Out[3]= 41

In[4]:= NextPrime[1 000 000 000, -1]

Out[4]= 999 999 937

Cryptography Notes: Technology Guides 17



CHAPTER 1. INTRODUCTION TO MATHEMATICA

1.5.8 Jacobi and Legendre Symbols

Recall that the Legendre symbol is defined as follows, for an odd prime n,

(m
n

)
=


0, if m ≡ 0 (mod n)
1, if 0 6≡ m ≡ x2 (mod n), for some x
−1, otherwise

So for an odd prime n, the Legendre symbol will tell us if an integer m is a quadratic residue
modulo n. The Jacobi symbol is a generalization of the Legendre symbol, it is defined for
any odd number n as (m

n

)
=

(
m

p1

)a1 (m
p2

)a2

· · ·
(
m

pr

)ar

where all of the pi are distinct primes and n = pa11 p
a2
2 · · · parr . Note that each of the terms

in the above product are Legendre symbols, since all of the pi are prime. One big difference
between the Jacobi and Legendre symbols is that if n is not prime and

(
m
n

)
= 1 then we are

not guaranteed that m is a quadratic residue modulo n. On the other hand, if
(
m
n

)
= −1

then we know that m is not a quadratic residue modulo n.
In Mathematica, the command to do both of these symbols is JacobiSymbol[m, n].

If n is prime, then this is the Legendre symbol and we can deduce if m is a quadratic residue
modulo n. If n is not prime then we are working with the Jacobi symbol.

In[1]:= JacobiSymbol [5, 23]

Out[1]= -1

In[2]:= JacobiSymbol [3, 23]

Out[2]= 1

In[3]:= JacobiSymbol [19, 231]

Out[3]= 1

In[4]:= JacobiSymbol [17, 231]

Out[4]= -1

In[5]:= JacobiSymbol [3, 231]

Out[5]= 0

So in our above examples,

1. 5 is not a quadratic residue modulo 23.

2. 3 is a quadratic residue modulo 23. In fact, 3 ≡ 72 (mod 23).

3. We do not know if 19 is a quadratic residue modulo 231, but it is possible.

Cryptography Notes: Technology Guides 18



CHAPTER 1. INTRODUCTION TO MATHEMATICA

4. 17 is not a quadratic residue modulo 231.

5. Since gcd(3, 231) 6= 1, one of the Legendre symbols in the product definition of the
Jacobi symbol is 0, making the product 0.

1.5.9 Continued Fractions

A continued fraction is when you take a number x and express it in the form,

x = a1 +
1

a2 +
1

a3 +
1

a4 +
1

. . .

For some values of x their continued fraction representation will terminate, some will
repeat and some will neither terminate nor repeat. For example,

√
2 = 1 +

1

2 +
1

2 +
1

. . .

1 +
√

5

2
= 1 +

1

1 +
1

1 +
1

. . .
5742

2131
= 2 +

1

1 +
1

2 +
1

3 +
1

1 +
1

1 +
1

1 +
1

11 +
1

5

There are several Mathematica commands that come in handy when working with contin-
ued fractions and we will create one that will make some of the computations in these notes a
little easier. Mathematica’s ContinuedFraction[n] and ContinuedFraction[n, k]
commands will return a list representation of the continued fraction representation of n, the
second command gives just the first k entries. Here n can be any real number, it does not

Cryptography Notes: Technology Guides 19



CHAPTER 1. INTRODUCTION TO MATHEMATICA

have to be rational. So an output of {a1, a2, a3, a4, . . .} is a representation for,

a1 +
1

a2 +
1

a3 +
1

a4 +
1

. . .

If the number has a terminating continued fraction representation, Mathematica will
produce the entire representation, such as, in output number 4 below. In the case where the
continued fraction representation is repeating, Mathematica will halt the representation once
it notices that it has finished a period of the repetition. So in output number 1, Mathematica
gives {1, {2}} for the representation of

√
2. The curly brackets around the 2 represents the

repeating part. So Mathematica is telling us that the representation is {1, 2, 2, 2, . . .}.
In[1]:= ContinuedFraction [Sqrt[2]]

Out[1]= {1, {2}}

In[2]:= ContinuedFraction [Sqrt[2], 20]

Out[2]= {1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2}

In[3]:= ContinuedFraction [(1 + Sqrt[5]) / 2]

Out[3]= {1, {1}}

In[4]:= ContinuedFraction [632 816 312 / 5 321 548 121]

Out[4]= {0, 8, 2, 2, 3, 1, 8, 1, 2, 5, 3, 11, 6, 1, 5, 7, 3, 2, 2}

To convert a list to a continued fraction use the FromContinuedFraction(L) where
L is a list of the form {a1, a2, . . . , an} or {a1, a2, . . . , an, {r1, r2, . . . , rm}}.
In[1]:= lst = ContinuedFraction [632 816 312 / 5 321 548 121]

Out[1]= {0, 8, 2, 2, 3, 1, 8, 1, 2, 5, 3, 11, 6, 1, 5, 7, 3, 2, 2}

In[2]:= FromContinuedFraction [lst]

Out[2]=
632 816 312

5 321 548 121

In[3]:= lst2 = ContinuedFraction [Sqrt[2]]

Out[3]= {1, {2}}

In[4]:= FromContinuedFraction [lst2]

Out[4]= 2

Cryptography Notes: Technology Guides 20



CHAPTER 1. INTRODUCTION TO MATHEMATICA

In[5]:= lst3 = ContinuedFraction [Sqrt[2], 20]

Out[5]= {1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2}

In[6]:= FromContinuedFraction [lst3]

Out[6]=
22 619 537

15 994 428

In[7]:= N[%, 20]

Out[7]= 1.4142135623730964308

In[8]:= FromContinuedFraction [{5, 2, 4, {1, 2, 3}}]

Out[8]=
1

71
381 + 37 

There are times when we will want to find the continued fraction representation of a
number and then look at successive approximations by taking more and more of the continued
fraction. For example, with

√
2, we would look at

1 +
1

2
=

3

2
1 +

1

2 + 1
2

=
7

5
1 +

1

2 + 1
2+ 1

2

=
17

12

and so on. Mathematica has a built-in function, Convergents[n,k], that returns a list
of k continued fraction approximations of n. We can also create a simple function that can
give these to us one at a time, which might be more convenient in some calculations. Define
the new function FromContinuedFractionN as follows,

FromContinuedFractionN[L_, k_] := FromContinuedFraction[L[[1 ;; k]]]

This will take in a continued fraction list of the non-repeating type and an integer k and
output the kth approximation of the continued fraction. In Mathematica, the command
L[[1 ;; k]] simply extracts the first k elements of the list L and returns the sublist.

In[9]:= FromContinuedFractionN [L_, k_] :=

FromContinuedFraction [L[[1 ;; k]]]

In[10]:= FromContinuedFractionN [lst3, 3]

Out[10]=
7

5

In[11]:= FromContinuedFractionN [lst3, 10]

Out[11]=
3363

2378

Cryptography Notes: Technology Guides 21



CHAPTER 1. INTRODUCTION TO MATHEMATICA

In[12]:= Convergents[Sqrt[2], 10]

Out[12]= 1,
3

2
,
7

5
,
17

12
,
41

29
,
99

70
,
239

169
,
577

408
,
1393

985
,
3363

2378


In[13]:= N[Convergents[Sqrt[2], 10], 10]

Out[13]= {1.000000000, 1.500000000, 1.400000000, 1.416666667, 1.413793103,

1.414285714, 1.414201183, 1.414215686, 1.414213198, 1.414213625}

1.5.10 Solving Equations

Of course, we need to solve equations. Mathematica has a very powerful equation solver,
Solve. We will only be using a small portion of what it is capable of doing. For example,
it can find the, relatively ugly, exact solutions to x3 − 3x2 + 2x+ 5 = 0.

In[1]:= Solve[x^3 - 3 x^2 + 2 x + 5 == 0, x]

Out[1]= x → 1 -
2

3 45 - 2013 

1/3

-


1
2
45 - 2013 

1/3

32/3
,

x → 1 +

1 + ⅈ 3  
1
2
45 - 2013 

1/3

2 × 32/3
+

1 - ⅈ 3

22/3 3 45 - 2013 
1/3

,

x → 1 +

1 - ⅈ 3  
1
2
45 - 2013 

1/3

2 × 32/3
+

1 + ⅈ 3

22/3 3 45 - 2013 
1/3



A little more down to earth, the solutions to 3x2 − 2x− 5 = 0 are 5
3

and −1.

In[2]:= Solve[3 x^2 - 2 x - 5 == 0, x]

Out[2]= {x → -1}, x →
5

3


Several things to notice about the syntax to the Solve command. When you are solving a
single equation, the first argument is the equation to be solved and the second argument is the
variable to solve the equation for. An equation in Mathematica is simply two Mathematica
expressions with a double equal sign between them. If the equation does not have a double
equal in it, Mathematica will complain. If there is only one variable in the equation, then the
variable to be solved for can be omitted and Mathematica will take the one in the equation.

Mathematica can also solve modular equations. To tell Mathematica that we want to
solve the equation over a modulus all we need to do is put in a Modulus option at the end
of the command. The syntax for this is Modulus -> m where m is the desired modulus.

Cryptography Notes: Technology Guides 22



CHAPTER 1. INTRODUCTION TO MATHEMATICA

The arrow is a common Mathematica notation for setting options, it is created by a - and
> characters next to each other. When you type this in, Mathematica will automatically
shorten it to a single arrow character. It is possible that there are no solutions to an equation
or modular equation, in that case Mathematica will return an empty set.

In[1]:= Solve[2 x - 5 ⩵ 0, x, Modulus → 7]

Out[1]= {{x → 6}}

In[2]:= Solve[3 x^2 - 2 x - 5 ⩵ 0, x, Modulus → 7]

Out[2]= {{x → 4}, {x → 6}}

In[3]:= Solve[3 x^2 - 2 x - 5 ⩵ 0, x, Modulus → 3]

Out[3]= {{x → 2}}

In[4]:= Solve[x^2 ⩵ 25, x, Modulus → 37]

Out[4]= {{x → 5}, {x → 32}}

In[5]:= Mod[32^2, 37]

Out[5]= 25

In[6]:= Solve[x^10 ⩵ 25, x, Modulus → 37]

Out[6]= {{x → 2}, {x → 35}}

In[7]:= Mod[35^10, 37]

Out[7]= 25

In[8]:= Mod[2^10, 37]

Out[8]= 25

In[9]:= Solve[x^2 ⩵ 2, x, Modulus → 37]

Out[9]= {}

1.5.11 Factoring

Factoring is essential for many cyptographic processes and cryptanalysis. In fact, finding
faster factoring algorithms is one of the central goals in cryptography. To factor an integer in
Mathematica use the FactorInteger[n] command, where n is the number to be factored.

Cryptography Notes: Technology Guides 23



CHAPTER 1. INTRODUCTION TO MATHEMATICA

In[1]:= FactorInteger [78 319 748 917 546 879 163 956 196 193 769 134 651 ]

Out[1]= {{3, 1}, {13, 1}, {37, 1},

{19 151 901 878 983 , 1}, {2 833 955 636 283 909 138 479 , 1}}

As you can see from the output above, the FactorInteger command returns a list of
factor lists, in each factor list the first entry is the factor and the second is the multiplicity
of the factor.

1.5.12 Factoring Polynomials

In Mathematica, the command to factor a polynomial is Factor. In the first example below,
the input and output is the factorization of x6 + x5 + x3 + 1 using integer coefficients, that
is, the coefficients are integers and the coefficients of the factorization are also integers.

To factor a polynomial modulo a prime in Mathematica, simply include the Modulus
option at the end of the command, as we did with the second input. Now when the factor
command is invoked the factorization will be modulo the prime.

In[1]:= Factor[x^6 + x^5 + x^3 + 1]

Out[1]= (1 + x) 1 + x2 1 - x + x3

In[2]:= Factor[x^6 + x^5 + x^3 + 1, Modulus → 2]

Out[2]= (1 + x)3 1 + x + x3

1.5.13 Euler Totient Function

The Euler totient function, also known as the Euler phi function, φ(n) is the number of
integers less than or equal to n which are relatively prime to n. In Mathematica this command
is simply, EulerPhi[n].

In[1]:= EulerPhi[12]

Out[1]= 4

In[2]:= EulerPhi[58 741 398 061 036 107 365 103 746 301 374 560 173 465 071 346 ]

Out[2]= 18 873 378 929 238 574 252 365 598 155 418 446 287 441 510 400

Note that the calculation of the totient function requires the factorization of n, hence the
calculation time of the totient of a large number could be lengthy.

Cryptography Notes: Technology Guides 24



CHAPTER 1. INTRODUCTION TO MATHEMATICA

1.5.14 Primitive Roots and Element Orders

A primitive root modulo n is a number whose powers modulo n generate all numbers less
than n that are relatively prime to n. In more mathematical lingo, a primitive root modulo
n is a number whose powers modulo n generate all numbers in (Z/nZ)∗. If the multiplicative
group (Z/nZ)∗ is cyclic, PrimitiveRoot[n] computes the smallest primitive root modulo
n. (Z/nZ)∗ is cyclic if n is equal to 2, 4, pk or 2pk, where p is prime and greater than 2 and
k is a natural number. Most of the time, for us, n will be a prime number.

In[1]:= PrimitiveRoot [13]

Out[1]= 2

In[2]:= PrimitiveRoot [48 130 750 178 370 514 570 138 771 ]

Out[2]= 12

Mathematica also has several other commands that are useful for working with primitive
roots. The command PrimitiveRootList[n] will return a list of primitive roots modulo
n and the MultiplicativeOrder[k,n] will return the multiplicative order of k modulo
n.

In[3]:= PrimitiveRootList [373]

Out[3]= {2, 5, 6, 11, 14, 15, 24, 26, 32, 34, 35, 42, 43, 44, 47, 53, 54, 57,

60, 61, 62, 65, 72, 76, 77, 78, 79, 80, 82, 85, 92, 98, 99, 102,

105, 110, 118, 127, 128, 131, 132, 135, 141, 143, 149, 150, 151,

155, 159, 162, 166, 168, 171, 172, 174, 178, 180, 182, 183, 186,

187, 190, 191, 193, 195, 199, 201, 202, 205, 207, 211, 214,

218, 222, 223, 224, 230, 232, 238, 241, 242, 245, 246, 255,

263, 268, 271, 274, 275, 281, 288, 291, 293, 294, 295, 296,

297, 301, 308, 311, 312, 313, 316, 319, 320, 326, 329, 330,

331, 338, 339, 341, 347, 349, 358, 359, 362, 367, 368, 371}

In[4]:= MultiplicativeOrder [PrimitiveRoot [373], 373]

Out[4]= 372

In[5]:= MultiplicativeOrder [200, 373]

Out[5]= 12

In[6]:= MultiplicativeOrder [370, 373]

Out[6]= 93

Although Mathematica does not seem to have a command to test if an element is a prim-

Cryptography Notes: Technology Guides 25



CHAPTER 1. INTRODUCTION TO MATHEMATICA

itive root, it is easy to construct from the MultiplicativeOrder command. Following
the Mathematica naming conventions, a boolean valued function that asks if an input has a
particular property is usually called something that describes the property and ends in a Q,
so the name PrimitiveRootQ would be an obvious choice for this function. This function
will return true if k is a primitive root modulo n, and false if it is not. If n is not of the
form appropriate for the PrimitiveRoot or MultiplicativeOrder commands then
the result will be either an error or a return of the calling command.

PrimitiveRootQ[k_, n_] :=
MultiplicativeOrder[PrimitiveRoot[n], n] ==
MultiplicativeOrder[k, n];

In[7]:= PrimitiveRootQ [k_, n_] :=

MultiplicativeOrder [PrimitiveRoot [n], n] ==

MultiplicativeOrder [k, n];

In[8]:= PrimitiveRootQ [7, 373]

Out[8]= False

In[9]:= PrimitiveRootQ [291, 373]

Out[9]= True

One should note that these commands rely on the factorization of the totient function of
n, hence for large n the calculation could be lengthy.

1.5.15 Discrete Logarithms

Given three numbers, g, a, and n the solution x to the congruence gx ≡ a (mod n) is called
the discrete logarithm of a, base g modulo n, if x exists.

If (Z/nZ)∗ is a cyclic group (n is equal to 2, 4, pk or 2pk, where p is prime and greater
than 2 and k is a natural number), g a primitive root modulo n and let a be a member of
this group. A more general form of the MultiplicativeOrder command will solve the
discrete log problem. The command MultiplicativeOrder[g, n, {a}] will solve
the congruence gx ≡ a (mod n).

In[1]:= MultiplicativeOrder [5, 7, {2}]

Out[1]= 4

In[2]:= Mod[5^4, 7]

Out[2]= 2

In[3]:= MultiplicativeOrder [3, 7, {6}]

Out[3]= 3

Cryptography Notes: Technology Guides 26



CHAPTER 1. INTRODUCTION TO MATHEMATICA

In[4]:= Mod[3^3, 7]

Out[4]= 6

1.6 Vectors and Matrices

We will start out with some basic operations on matrices and vectors in general and then
we will discuss some ways of doing matrix operations over a modulus.

In Mathematica, vectors are simply lists and matrices are just lists of lists. One nifty
thing with the way that Mathematica handles lists is that we do not need to distinguish
between row vectors and column vectors, as we do in most other linear algebra software
packages.

1.6.1 Defining a Matrix and a Vector

A vector is simply a list, recall that a list in Mathematica is a sequence of expressions
separated by commas and enclosed in curly brackets. A matrix is a list of lists, each of the
contained lists are the rows to the matrix. Since a matrix is a list of lists, Mathematica does
not know if you, the user, wants to see a list of lists or a matrix. So there is a command
MatrixForm that will display a matrix list as a matrix. You can also apply this command
as a pipe at the end of a matrix expression.

In[1]:= v = {2, 5, 7}

Out[1]= {2, 5, 7}

In[2]:= MatrixForm [v]

Out[2]//MatrixForm=

2
5
7

In[3]:= m = {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}

Out[3]= {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}

In[4]:= MatrixForm [m]

Out[4]//MatrixForm=

1 2 3
4 5 6
7 8 9

Cryptography Notes: Technology Guides 27



CHAPTER 1. INTRODUCTION TO MATHEMATICA

In[5]:= m // MatrixForm

Out[5]//MatrixForm=

1 2 3
4 5 6
7 8 9

We will discuss matrix operations a little later but the period is the multiplication oper-
ator for matrices. The two commands below show that Mathematica is treating the vector
v as both a row vector and a column vector, without the need to explicitly convert it. In
input 6, v is a column vector and in input 7, v is a row vector.

In[6]:= m.v

Out[6]= {33, 75, 117}

In[7]:= v.m

Out[7]= {71, 85, 99}

Another nifty thing you can do with matrices is to extract rows, columns and entries
relatively easily. You can also join matrices together, add rows and columns to a matrix,
and change entries

Once a matrix, say m is defined, you can extract the (i, j) entry using m[[i,j]] or
m[[i]][[j]]. You can extract a row by m[[i]], where i is the row to extract. Note that
these operations do not alter the original matrix.

In[1]:= m = {{1, 2, 3, 4}, {5, 6, 7, 8}, {9, 10, 11, 12}}

Out[1]= {{1, 2, 3, 4}, {5, 6, 7, 8}, {9, 10, 11, 12}}

In[2]:= m // MatrixForm

Out[2]//MatrixForm=

1 2 3 4
5 6 7 8
9 10 11 12

In[3]:= m[[1]]

Out[3]= {1, 2, 3, 4}

In[4]:= m[[2]][[3]]

Out[4]= 7

In[5]:= m[[2, 3]]

Out[5]= 7

Cryptography Notes: Technology Guides 28



CHAPTER 1. INTRODUCTION TO MATHEMATICA

You can extract a sequence of rows using the command m[[i;;j]].

In[6]:= m[[2 ;; 3]]

Out[6]= {{5, 6, 7, 8}, {9, 10, 11, 12}}

Column extraction is similar, you simply need to put an All in for the row selection, so
m[[All, i]] will extract the ith column. Also, using the range operation can extract a
sequence of columns, the command m[[All, i;;j]] will extract columns i to j.

In[7]:= m[[All, 2]]

Out[7]= {2, 6, 10}

In[8]:= m[[All, 2 ;; 3]] // MatrixForm

Out[8]//MatrixForm=

2 3
6 7
10 11

You can assign one matrix to another, be careful which type of assignment you use,
these is a difference between the immediate and the delayed assignment. For example, the
immediate assignment of a to m, as in input 9, will copy the contents of m to a, but the
delayed assignment of d to m will not. In input 13, we change the (1, 1) position of m to x,
note that this alters m as expected and it does not alter a but it does alter d, since when d
is used, it looks at the current state of m and not the state of m when the assignment was
done, as it did with a.

In[9]:= a = m

Out[9]= {{1, 2, 3, 4}, {5, 6, 7, 8}, {9, 10, 11, 12}}

In[10]:= a

Out[10]= {{1, 2, 3, 4}, {5, 6, 7, 8}, {9, 10, 11, 12}}

In[11]:= d := m

In[12]:= d

Out[12]= {{1, 2, 3, 4}, {5, 6, 7, 8}, {9, 10, 11, 12}}

In[13]:= m[[1, 1]] = x

Out[13]= x

In[14]:= m

Out[14]= {{x, 2, 3, 4}, {5, 6, 7, 8}, {9, 10, 11, 12}}

Cryptography Notes: Technology Guides 29



CHAPTER 1. INTRODUCTION TO MATHEMATICA

In[15]:= a

Out[15]= {{1, 2, 3, 4}, {5, 6, 7, 8}, {9, 10, 11, 12}}

In[16]:= d

Out[16]= {{x, 2, 3, 4}, {5, 6, 7, 8}, {9, 10, 11, 12}}

You can also join matrices together, add rows and columns to matrices as well. As with
extraction, these operations do not alter the original matrices, if you wish to do that you
need to include an assignment of the result to a variable. The Join command will join
matrices and/or vectors by rows, that is vertically. You can join matrices horizontally or
add columns by adding a 2 at the end of the command, as in input 20.

In[17]:= b = {{-1, 4, 2, -1}, {3, 2, 1, 1}, {5, 2, 7, 1}, {2, 7, 5, 1}}

Out[17]= {{-1, 4, 2, -1}, {3, 2, 1, 1}, {5, 2, 7, 1}, {2, 7, 5, 1}}

In[18]:= Join[m, b] // MatrixForm

Out[18]//MatrixForm=

x 2 3 4
5 6 7 8
9 10 11 12
-1 4 2 -1
3 2 1 1
5 2 7 1
2 7 5 1

In[19]:= Join[m, {{3, 3, 3, 3}}] // MatrixForm

Out[19]//MatrixForm=

x 2 3 4
5 6 7 8
9 10 11 12
3 3 3 3

In[20]:= Join[m, Transpose[{{3, 3, 3}}], 2] // MatrixForm

Out[20]//MatrixForm=

x 2 3 4 3
5 6 7 8 3
9 10 11 12 3

Since matrices in Mathematica are simply lists of lists, the Table command gives a very
versatile tool for the construction of a general matrix that has some pattern to the entries.

Cryptography Notes: Technology Guides 30



CHAPTER 1. INTRODUCTION TO MATHEMATICA

The following example constructs a Hilbert matrix, which is a square matrix whose (i, j)
entry is 1

i+j−1 .

In[21]:= c = Table[1 / (i + j - 1), {i, 1, 5}, {j, 1, 5}] // MatrixForm

Out[21]//MatrixForm=

1 1

2

1

3

1

4

1

5
1

2

1

3

1

4

1

5

1

6
1

3

1

4

1

5

1

6

1

7
1

4

1

5

1

6

1

7

1

8
1

5

1

6

1

7

1

8

1

9

Mathematica has many more commands for the creation of special matrices, extraction
and joining, but this should be sufficient for our purposes. If you are interested in fancier
manipulations, please see the Mathematica help system.

1.6.2 Matrix Arithmetic

Matrix addition and subtraction are done with the usual + and − operators. If the matrices
are the same size then the operation returns the resulting matrix, if the matrices are not
the same size then Mathematica displays an error. Matrix multiplication is not done with
the * symbol, M*A will return an entry by entry product, which is not the standard matrix
multiplication. The same is true for the / symbol, M/A will return an entry by entry quotient.
There may be times you want to use these types of operations but we are more interested in
the standard matrix multiplication. Matrix multiplication is done with the . symbol, M.A
will return the matrix product as long as the matrices are of compatible size, if not, you will
get an error.

In[1]:= m = {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}

Out[1]= {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}

In[2]:= a = {{1, 0, 1}, {2, 1, 5}, {3, 2, 0}}

Out[2]= {{1, 0, 1}, {2, 1, 5}, {3, 2, 0}}

In[3]:= b = {{-1, 3, 2}, {-2, 0, 4}}

Out[3]= {{-1, 3, 2}, {-2, 0, 4}}

In[4]:= c = {{-1, 3}, {-2, 0}, {1, 1}}

Out[4]= {{-1, 3}, {-2, 0}, {1, 1}}

Cryptography Notes: Technology Guides 31



CHAPTER 1. INTRODUCTION TO MATHEMATICA

In[5]:= a + m

Out[5]= {{2, 2, 4}, {6, 6, 11}, {10, 10, 9}}

In[6]:= a - m

Out[6]= {{0, -2, -2}, {-2, -4, -1}, {-4, -6, -9}}

In[7]:= a + b

Thread::tdlen : Objects of unequal length in 

{{1, 0, 1}, {2, 1, 5}, {3, 2, 0}} + {{-1, 3, 2}, {-2, 0, 4}} cannot be combined. 

Out[7]= {{-1, 3, 2}, {-2, 0, 4}} + {{1, 0, 1}, {2, 1, 5}, {3, 2, 0}}

In[8]:= b - Transpose[c]

Out[8]= {{0, 5, 1}, {-5, 0, 3}}

In[9]:= a.m

Out[9]= {{8, 10, 12}, {41, 49, 57}, {11, 16, 21}}

In[10]:= b.c

Out[10]= {{-3, -1}, {6, -2}}

In[11]:= c.b

Out[11]= {{-5, -3, 10}, {2, -6, -4}, {-3, 3, 6}}

In[12]:= m.b

Dot::dotsh : Tensors {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}} and {{-1, 3, 2}, {-2, 0, 4}} have incompatible shapes. 

Out[12]= {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}.{{-1, 3, 2}, {-2, 0, 4}}

Matrix powers are not done by ˆ but rather with the command MatrixPower. If A is a
square matrix then MatrixPower[A,3] will return A3. Using only the single power symbol
will return a matrix with each entry raised to the power, again, this might be something you
want to do but not for taking a matrix power. If A is not a square matrix, you will get an
error when taking a power.

In[13]:= MatrixPower[a, 3]

Out[13]= {{11, 4, 14}, {62, 25, 74}, {50, 28, 17}}

Finding the inverse of a matrix can be done with MatrixPower[A,-1] or with the
Inverse(A) command. If A is not square or if the matrix is not invertible you will get an
error. You can find the determinant of a square matrix using the Det[A] command.

Cryptography Notes: Technology Guides 32



CHAPTER 1. INTRODUCTION TO MATHEMATICA

In[14]:= Det[a]

Out[14]= -9

In[15]:= Inverse[a]

Out[15]= 
10

9
, -

2

9
,
1

9
, -

5

3
,
1

3
,
1

3
, -

1

9
,
2

9
, -

1

9


The following is what happens if you use the standard multiplication, division and power
operations on matrices, everything is carried out entry by entry.

In[16]:= a^3

Out[16]= {{1, 0, 1}, {8, 1, 125}, {27, 8, 0}}

In[17]:= a * m

Out[17]= {{1, 0, 3}, {8, 5, 30}, {21, 16, 0}}

In[18]:= a / m

Out[18]= 1, 0,
1

3
, 

1

2
,
1

5
,
5

6
, 

3

7
,
1

4
, 0

1.6.3 Matrix Reduction

The Mathematica command for reducing a matrix to reduce row echelon form is RowReduce[A],
where A is the matrix to be reduced. The RowReduce[A] command returns the echelon
form of the matrix A, as produced by Gaussian elimination. The reduced echelon form is
computed from A by elementary row operations such that the first non-zero element in each
row in the resulting matrix is one and the column elements over and under the first one in
each row are all zero.

In[1]:= m = {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}

Out[1]= {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}

In[2]:= a = {{1, 0, 1}, {2, 1, 5}, {3, 2, 0}}

Out[2]= {{1, 0, 1}, {2, 1, 5}, {3, 2, 0}}

In[3]:= b = {{-1, 3, 2}, {-2, 0, 4}}

Out[3]= {{-1, 3, 2}, {-2, 0, 4}}

In[4]:= RowReduce[m]

Out[4]= {{1, 0, -1}, {0, 1, 2}, {0, 0, 0}}

Cryptography Notes: Technology Guides 33



CHAPTER 1. INTRODUCTION TO MATHEMATICA

In[5]:= RowReduce[a]

Out[5]= {{1, 0, 0}, {0, 1, 0}, {0, 0, 1}}

In[6]:= RowReduce[b]

Out[6]= {{1, 0, -2}, {0, 1, 0}}

1.6.4 Modular Matrix Operations

When doing modular arithmetic on matrices or matrix reduction in Mathematica, it takes
a couple different techniques, most of which we have seen. You simply need to be careful
which technique you use for which operation.

When doing modular matrix arithmetic, that is, addition, subtraction, multiplication,
and positive powers, simply put the operation inside a Mod command. Inverse and negative
powers require a different method which we will discuss below. One word of caution, the
PowerMod function does not work on matrices, at least not the way we want to, so to take
a modular matrix power, you first take the matrix power and then the modulus. So the
matrix powers should not be too large.

In[1]:= m = {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}

Out[1]= {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}

In[2]:= a = {{1, 0, 1}, {2, 1, 5}, {3, 2, 0}}

Out[2]= {{1, 0, 1}, {2, 1, 5}, {3, 2, 0}}

In[3]:= b = {{-1, 3, 2}, {-2, 0, 4}}

Out[3]= {{-1, 3, 2}, {-2, 0, 4}}

In[4]:= Mod[m, 5]

Out[4]= {{1, 2, 3}, {4, 0, 1}, {2, 3, 4}}

In[5]:= Mod[a.m, 5]

Out[5]= {{3, 0, 2}, {1, 4, 2}, {1, 1, 1}}

In[6]:= Mod[b.a, 5]

Out[6]= {{1, 2, 4}, {0, 3, 3}}

In[7]:= Mod[MatrixPower[a, 10], 7]

Out[7]= {{2, 3, 2}, {5, 2, 6}, {5, 4, 1}}

Modular matrix inverses use a different technique. For the inverse we again use the
Inverse command but we add the option of a modulus. To tell Mathematica that we want

Cryptography Notes: Technology Guides 34



CHAPTER 1. INTRODUCTION TO MATHEMATICA

to invert the matrix over a modulus all we need to do is put in a Modulus option at the end
of the command. The syntax for this is Modulus -> m where m is the desired modulus.
The arrow is a common Mathematica notation for setting options, it is created by a - and
> characters next to each other. When you type this in, Mathematica will automatically
shorten it to a single arrow character. It is possible that the matrix is not invertible with the
input modulus, in that case Mathematica will return an error. You can also use the modulus
option in the determinant calculation but taking a mod of the determinant is just as easy.

In[8]:= Det[a]

Out[8]= -9

In[9]:= Mod[Det[a], 5]

Out[9]= 1

In[10]:= Det[a, Modulus → 5]

Out[10]= 1

In[11]:= Det[a, Modulus → 3]

Out[11]= 0

In[12]:= Inverse[a, Modulus → 5]

Out[12]= {{0, 2, 4}, {0, 2, 2}, {1, 3, 1}}

In[13]:= Inverse[a, Modulus → 3]

Inverse::sing : Matrix {{1, 0, 1}, {2, 1, 2}, {0, 2, 0}} is singular. 

Out[13]= Inverse[{{1, 0, 1}, {2, 1, 5}, {3, 2, 0}}, Modulus → 3]

Modular matrix reduction can be done the same way, simply include the modulus option
inside the RowReduce command.

In[14]:= RowReduce[m, Modulus → 5] // MatrixForm

Out[14]//MatrixForm=

1 0 4
0 1 2
0 0 0

In[15]:= RowReduce[a, Modulus → 5] // MatrixForm

Out[15]//MatrixForm=

1 0 0
0 1 0
0 0 1

Cryptography Notes: Technology Guides 35



CHAPTER 1. INTRODUCTION TO MATHEMATICA

In[16]:= RowReduce[a, Modulus → 3] // MatrixForm

Out[16]//MatrixForm=

1 0 1
0 1 0
0 0 0

1.7 Elliptic Curves

Many people have created functions for doing calculations on elliptic curves in Mathematica
and what is below is certainly not new. The functions we have created below are to help
with the experimentation of elliptic curves over a finite modulus. We have created enough
functionality to work with Elliptic Curve Cryptography.

All of the Mathematica functions that are discussed in this section are in the CryptDSEC.nb
Notebook file that can be found on my web site. To load all of the functions download the
CryptDSEC.nb file then in Mathematica,

1. Open a new Notebook

2. Navigate to the CryptDSEC.nb file.

3. Select it and click Open.

4. From the Menu, evaluate all cells.

At this point all of the functions will be loaded into the Mathematica session. You can open
another Notebook and use the new functions without working in the same notebook.

Although a general elliptic curve is represented by

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

we will make the assumption that we can reduce the equation to the form

y2 = x3 + bx+ c

We will also be restricting ourselves to modular elliptic curves and hence our function will
be working on curves of the form,

y2 = x3 + bx+ c (mod n)

Most of our functions will take the parameters b, c, and n to define the elliptic curve we
are working with.

Cryptography Notes: Technology Guides 36



CHAPTER 1. INTRODUCTION TO MATHEMATICA

1.7.1 Points on an Elliptic Curve

To do some basic point finding on an elliptic curve we can use the following functions. The
first will find all of the point on the curve. The first function will find all the points except
for the point at infinity. The second Function finds all the points including the point at
infinity, which we denote as {∞,∞}. The third function finds the total number of points on
the elliptic curve including the point at infinity.

ECPoints[b_,c_,n_]:=Module[{PtLst, i, j, lhs, rhs},
PtLst={};
For[i=0,i<n,i++,

rhs=Mod[iˆ3+b*i+c,n];
For[j=0,j<n,j++,lhs=Mod[jˆ2,n];

If[rhs==lhs,PtLst=Append[PtLst,List[i,j]]];
]

];
PtLst

]

ECAllPoints[b_,c_,n_]:=Module[{PtLst, i, j, lhs, rhs},
PtLst={};
For[i=0,i<n,i++,

rhs=Mod[iˆ3+b*i+c,n];
For[j=0,j<n,j++,

lhs=Mod[jˆ2,n];
If[rhs==lhs,PtLst=Append[PtLst,List[i,j]]];

]
];
PtLst=Append[PtLst,List[Infinity,Infinity]];
PtLst

]

ECOrder[b_,c_,n_]:=Module[{t, i, j, lhs, rhs},
t=1;
For[i=0,i<n,i++,

rhs=Mod[iˆ3+b*i+c,n];
For[j=0,j<n,j++,

lhs=Mod[jˆ2,n];
If[rhs==lhs,t++];

]
];
t

]

If one takes a quick look at the code it is clear, even if you never programmed in Mathe-
matica, that these are brute force algorithms and hence not the most efficient. So one should
be careful with using large moduli.

For example, if we wanted to find the points, all of the points including infinity, and the
count of all the points (that is the group order), on the curve y2 = x3 + x + 1 (mod 5) we
could use the following commands.

Cryptography Notes: Technology Guides 37



CHAPTER 1. INTRODUCTION TO MATHEMATICA

In[ ]:= ECPoints[1, 1, 5]

Out[ ]= {{0, 1}, {0, 4}, {2, 1}, {2, 4}, {3, 1}, {3, 4}, {4, 2}, {4, 3}}

In[ ]:= ECAllPoints[1, 1, 5]

Out[ ]= {{0, 1}, {0, 4}, {2, 1}, {2, 4},

{3, 1}, {3, 4}, {4, 2}, {4, 3}, {∞, ∞}}

In[ ]:= ECOrder[1, 1, 5]

Out[ ]= 9

Note that the output is a list of pair lists. Each pair is a single point on the curve and the
single list notation makes it easy to load into other Mathematica functions. For example, to
plot the points on the curve y2 = x3 + x+ 1 (mod 17) we could use the following command.

In[ ]:= ListPlot[ECPoints[1, 1, 17]]

Out[ ]=

5 10 15

5

10

15

We have also included a function that will do the same thing in one step.

ECPlot[b_,c_,n_]:=Module[{},
ListPlot[ECPoints[b,c,n]]

]

So the command ECPlot[1,1,17] will produce the same graph.

Cryptography Notes: Technology Guides 38



CHAPTER 1. INTRODUCTION TO MATHEMATICA

In[ ]:= ECPlot[1, 1, 17]

Out[ ]=

5 10 15

5

10

15

We can check if a point is on a given curve using,

ECPointOnCurve[b_,c_,n_,pt_]:=Module[{t, i, j, lhs, rhs,res},
i=pt[[1]];
j=pt[[2]];
rhs=Mod[iˆ3+b*i+c,n];
lhs=Mod[jˆ2,n];
If[rhs==lhs,res=True,res=False];
res

]

In this function the point we are checking needs to be an ordered pair in a list, just like
the output of the point generators. For example,

In[ ]:= ECPointOnCurve[1, 1, 5, {3, 1}]

Out[ ]= True

In[ ]:= ECPointOnCurve[1, 1, 5, {1, 1}]

Out[ ]= False

We can also find points on a curve given either their x or y coordinate. The following
functions will return a list of all points on the curve if any exists or an empty list if there is
no point on the curve with the given x or y coordinate.

ECPointWithX[b_,c_,n_,x_]:=Module[{y,i,rhs, res,sols},
res={};
rhs=Mod[xˆ3+b*x+c,n];
sols=Values[Solve[yˆ2==rhs,Modulus->n]];
For[i=1,i<=Length[sols],i++,

y=sols[[i,1]];
res=Append[res,List[x,y]]

];
res

]

ECPointWithY[b_,c_,n_,y_]:=Module[{x,i,lhs, res,sols},
res={};
lhs=Mod[yˆ2,n];

Cryptography Notes: Technology Guides 39



CHAPTER 1. INTRODUCTION TO MATHEMATICA

sols=Values[Solve[xˆ3+b*x+c==lhs,Modulus->n]];
For[i=1,i<=Length[sols],i++,

x=sols[[i,1]];
res=Append[res,List[x,y]]

];
res

]

For example, if we wanted to find points on y2 = x3 + x + 1 (mod 5) we could use the
following commands.

In[ ]:= ECPointWithX[1, 1, 5, 2]

Out[ ]= {{2, 1}, {2, 4}}

In[ ]:= ECPointWithX[1, 1, 5, 1]

Out[ ]= {}

In[ ]:= ECPointWithY[1, 1, 5, 1]

Out[ ]= {{0, 1}, {2, 1}, {3, 1}}

In[ ]:= ECPointWithY[1, 1, 5, 0]

Out[ ]= {}

Note that we have also included brute force algorithms to do this. They have BF at the
end of the function name and will return just the first point that is found. Also you will
want to use a modulus of a moderate size. The above functions are far more efficient but in
case you need these they have been included.
ECPointWithXBF[b_,c_,n_,x_]:=Module[{i, lhs, rhs, res},

res={};
rhs=Mod[xˆ3+b*x+c,n];
i = 0;
While[i<n,

lhs=Mod[iˆ2,n];
If[rhs==lhs,res={x,i};i = n];
i++;

];
res

]

ECPointWithYBF[b_,c_,n_,y_]:=Module[{i, j, lhs, rhs, res},
res={};
rhs=Mod[yˆ2,n];
i = 0;
While[i<n,

lhs=Mod[iˆ3+b*i+c,n];
If[rhs==lhs,res={i,y};i = n];
i++;

];
res

]

In Elliptic Curve Cryptography it is common to select the linear term and modulus of
the curve and a particular point you want on the curve and then calculate the constant term
from this information. While this is a simple calculation we created a function to do this.

Cryptography Notes: Technology Guides 40



CHAPTER 1. INTRODUCTION TO MATHEMATICA

ECGenerateCurveConstant[b_,n_,pt_]:=Module[{},
Mod[pt[[2]]ˆ2-(pt[[1]]ˆ3+b*pt[[1]]),n]

]

For example, say we wanted the point (7657, 74389) to be on the curve with linear term
3284 and modulus 3263561.

In[ ]:= ECGenerateCurveConstant[3284, 3 263 561, {7657, 74 389}]

Out[ ]= 1 388 410

In[ ]:= ECPointOnCurve[3284, 1 388 410, 3 263 561, {7657, 74 389}]

Out[ ]= True

We find that the curve y2 = x3 + 3284x+ 1388410 (mod 3263561) does the trick.

1.7.2 Arithmetic on an Elliptic Curve

If you have studied elliptic curves you know
that there is a method to add two points
on an elliptic curve to obtain a third point
on the curve. In fact, if you have stud-
ied group theory you know that this point
addition defines an abelian group structure
on the curve. In the case of finite groups
this structure is sometimes cyclic. Although
we will be dealing with curve modulo n we
will briefly discuss the addition law geomet-
rically for elliptic curves in R2. The addition
law in this case has a nice geometrical inter-
pretation that also sheds some light on the
formulas.

To add two points on an elliptic curve A
and B where A 6= B you first draw a straight
line through the two points, this will inter-
sect the curve in another point. Then reflect
this point over the x axis to obtain the sum
of A and B. So in the diagram on the right
we have A+B = F .

In the case where A = B, in other words we want to calculate 2A we take the tangent
line to the elliptic curve at A, this will intersect the curve in another point. Then reflect this
point over the x axis to obtain 2A. So in the diagram on the right we have 2A = D.

In the cases where the line through A and B is vertical or if the tangent line in vertical
when calculating 2A the sum is the point at infinity, ∞. If we translate this geometric
description into algebraic formulas we have the following Addition Law on elliptic curves.

Cryptography Notes: Technology Guides 41



CHAPTER 1. INTRODUCTION TO MATHEMATICA

Let E be given by y2 = x3 + bx + c and let
P1 = (x1, y1) and P2 = (x2, y2), then P1 +
P2 = P3 = (x3, y3) where

x3 = m2 − x1 − x2
y3 = m(x1 − x3)− y1

and

m =


y2−y1
x2−x1

if P1 6= P2

3x2
1+b

2y1
if P1 = P2

If the slope m is infinite, then P3 = ∞.
There is one additional law: ∞ + P = P
for all points P .

Although these equations were developed
using continuous curves and derivatives the
same formulas work for the discrete case of
finite curves over a modulus. The tricky
point here is that in the derivation of m we
have either x2 − x1 or 2y1 in the denominator. So if we are working modulo n these values
need to have multiplicative inverses modulo n. If they do not have a multiplicative inverse
modulo n then the greatest common divisor between them and n is greater then 1 and in
some cases this will lead to a factorization of n.

We have created four Mathematica functions to do some arithmetic operations. The first
is a point addition function. This function will return the sum of the input points if it exists
and if not it will return −1.

ECPointAdd[b_,c_,n_,pt1_,pt2_]:=Module[{x,y,invy,m},
If[pt1==-1,Return[-1]];
If[pt2==-1,Return[-1]];
If[pt1[[1]]==Infinity,Return[pt2]];
If[pt2[[1]]==Infinity,Return[pt1]];
If[pt1==pt2,

If[Mod[2*pt1[[2]],n]==0,Return[List[Infinity,Infinity]]];
If[GCD[2*pt1[[2]],n]>1,Return[-1]];
invy=ModularInverse[2*pt1[[2]],n];
m=Mod[(3*pt1[[1]]ˆ2+b)*invy,n];,
If[Mod[pt1[[1]],n]==Mod[pt2[[1]],n],Return[List[Infinity,Infinity]]];
If[GCD[pt1[[1]]-pt2[[1]],n]>1,Return[-1]];
invy=ModularInverse[pt1[[1]]-pt2[[1]],n];
m=Mod[(pt1[[2]]-pt2[[2]])*invy,n];

];
x=Mod[mˆ2-pt1[[1]]-pt2[[1]],n];
y=Mod[m*(pt1[[1]]-x)-pt1[[2]],n];
List[x,y]

]

For example, say we wanted to add the two points (2, 1) and (4, 2) on the elliptic curve
y2 = x3 + x + 1 (mod 5). We see that the result is the point (3, 1). Additionally, (2, 1) +

Cryptography Notes: Technology Guides 42



CHAPTER 1. INTRODUCTION TO MATHEMATICA

(2, 4) =∞ and 2 · (3, 1) = (0, 1). Also, if we were to add the two points (1, 3) and (1771, 705)
on the elliptic curve y2 = x3 + 4x + 4 (mod 2773). We see that the result is an error. This
is because the GCD of x2 − x1 − 1770 and the modulus 2773 is 59 and hence 1770 is not
invertible modulo 2773. The added information is that 59 is a nontrivial factor of 2773. This
also shows that if the modulus is not prime (that is the base structure is not a field) then
the resulting curve with the addition law does not form a group structure, addition is not
closed. It is precisely this fact that is the driver of Lenstra’s Elliptic Curve Factorization
algorithm.

In[ ]:= ECPointAdd[1, 1, 5, {2, 1}, {4, 2}]

Out[ ]= {3, 1}

In[ ]:= ECPointAdd[1, 1, 5, {2, 1}, {2, 4}]

Out[ ]= {∞, ∞}

In[ ]:= ECPointAdd[1, 1, 5, {3, 1}, {3, 1}]

Out[ ]= {0, 1}

In[ ]:= ECPointAdd[4, 4, 2773, {1, 3}, {1771, 705}]

Out[ ]= -1

We have created two functions for doing scalar multiplication, the first calculates t · P
and the second calculates t! ·P . The scalar multiple function uses a binary decomposition of
the scalar and hence is very fast but the factorial scalar multiple needs to run through each
scalar multiple and can be slow for large values of t.

ECPointScalarMult[b_,c_,n_,m_,pt1_]:=Module[{retpt,newy, t, pt},
If[pt1==-1,Return[-1]];
retpt=List[Infinity,Infinity];
t = m;
pt=pt1;
If[t < 0,t=-t;newy=Mod[-pt[[2]],n];pt=List[pt[[1]],newy]];
While[t > 0,

If[Mod[t,2]==1,retpt=ECPointAdd[b,c,n,retpt,pt]];
pt=ECPointAdd[b,c,n,pt,pt];
t=Floor[t/2];

];
retpt

]

ECPointFactorialScalarMult[b_,c_,n_,m_,pt1_]:=Module[{pt,i},
pt=pt1;
For[i=2,i<=m,i++,pt=ECPointScalarMult[b,c,n,i,pt]];
pt

]

For example, say we wanted to calculate 5 · (13, 4), 738956431 · (13, 4), 5! · (13, 4), and
20! · (13, 4) on the curve y2 = x3 + 2x+ 3 (mod 17). The following commands will do these
calculations.

In[ ]:= ECPointScalarMult[2, 3, 17, 5, {13, 4}]

Out[ ]= {9, 6}

Cryptography Notes: Technology Guides 43



CHAPTER 1. INTRODUCTION TO MATHEMATICA

In[ ]:= ECPointScalarMult[2, 3, 17, 738 956 431, {13, 4}]

Out[ ]= {5, 11}

In[ ]:= ECPointFactorialScalarMult[2, 3, 17, 5, {13, 4}]

Out[ ]= {3, 6}

In[ ]:= ECPointFactorialScalarMult[2, 3, 17, 20, {13, 4}]

Out[ ]= {∞, ∞}

As we pointed out above, elliptic curves with prime modulus form a group structure. In
group theory the order of an element is of some importance. We have included another brute
force algorithm to calculate the order of a point on the elliptic curve.

ECPointOrder[b_,c_,n_,pt1_]:=Module[{t, pt,i,r},
If[pt1==-1,Return[-1]];
retpt=List[Infinity,Infinity];
t = True;
i=1;
While[t,

pt=ECPointScalarMult[b,c,n,i,pt1];
If[pt==-1,Return[-1]];
If[pt[[1]]==Infinity,r=i;t=False];
i++;

];
r

]

For example, calculate the order of (13, 4) on the curve y2 = x3 + 2x+ 3 (mod 17) we do
the following.

In[ ]:= ECPointOrder[2, 3, 17, {13, 4}]

Out[ ]= 22

As another example, if we calculate the order of (1, 3) on the curve y2 = x3 + 4x + 4
(mod 2773), which does not exist since this curve does not create a group structure and the
point (1, 3) never cycles back to the identity, we get the following.

In[ ]:= ECPointOrder[4, 4, 2773, {1, 3}]

Out[ ]= -1

1.8 CryptDSEC.nb

The Mathematica functions that were discussed in this section are in the CryptDSEC.nb file
that can be found on my web site. To load all of the functions download the CryptDSEC.nb
file then in Mathematica,

1. Open a new Notebook

2. Navigate to the CryptDSEC.nb file.

Cryptography Notes: Technology Guides 44



CHAPTER 1. INTRODUCTION TO MATHEMATICA

3. Select it and click Open.

4. From the Menu, evaluate all cells.

At this point all of the functions will be loaded into the Mathematica session. You can open
another Notebook and use the new functions without working in the same notebook.

1.8.1 CryptDSEC.nb Code

ECPoints[b_,c_,n_]:=Module[{PtLst, i, j, lhs, rhs},
PtLst={};
For[i=0,i<n,i++,

rhs=Mod[iˆ3+b*i+c,n];
For[j=0,j<n,j++,

lhs=Mod[jˆ2,n];
If[rhs==lhs,PtLst=Append[PtLst,List[i,j]]];

]
];
PtLst

]

ECAllPoints[b_,c_,n_]:=Module[{PtLst, i, j, lhs, rhs},
PtLst={};
For[i=0,i<n,i++,

rhs=Mod[iˆ3+b*i+c,n];
For[j=0,j<n,j++,

lhs=Mod[jˆ2,n];
If[rhs==lhs,PtLst=Append[PtLst,List[i,j]]];

]
];
PtLst=Append[PtLst,List[Infinity,Infinity]];
PtLst

]

ECOrder[b_,c_,n_]:=Module[{t, i, j, lhs, rhs},
t=1;
For[i=0,i<n,i++,

rhs=Mod[iˆ3+b*i+c,n];
For[j=0,j<n,j++,

lhs=Mod[jˆ2,n];
If[rhs==lhs,t++];

]
];
t

]

ECPlot[b_,c_,n_]:=Module[{},
ListPlot[ECPoints[b,c,n]]

]

ECPointOnCurve[b_,c_,n_,pt_]:=Module[{t, i, j, lhs, rhs,res},
i=pt[[1]];
j=pt[[2]];
rhs=Mod[iˆ3+b*i+c,n];
lhs=Mod[jˆ2,n];
If[rhs==lhs,res=True,res=False];
res

]

ECPointWithXBF[b_,c_,n_,x_]:=Module[{i, lhs, rhs, res},
res={};
rhs=Mod[xˆ3+b*x+c,n];

Cryptography Notes: Technology Guides 45



CHAPTER 1. INTRODUCTION TO MATHEMATICA

i = 0;
While[i<n,

lhs=Mod[iˆ2,n];
If[rhs==lhs,res={x,i};i = n];
i++;

];
res

]

ECPointWithYBF[b_,c_,n_,y_]:=Module[{i, j, lhs, rhs, res},
res={};
rhs=Mod[yˆ2,n];
i = 0;
While[i<n,

lhs=Mod[iˆ3+b*i+c,n];
If[rhs==lhs,res={i,y};i = n];
i++;

];
res

]

ECGenerateCurveConstant[b_,n_,pt_]:=Module[{},
Mod[pt[[2]]ˆ2-(pt[[1]]ˆ3+b*pt[[1]]),n]

]

ECPointWithX[b_,c_,n_,x_]:=Module[{y,i,rhs, res,sols},
res={};
rhs=Mod[xˆ3+b*x+c,n];
sols=Values[Solve[yˆ2==rhs,Modulus->n]];
For[i=1,i<=Length[sols],i++,

y=sols[[i,1]];
res=Append[res,List[x,y]]

];
res

]

ECPointWithY[b_,c_,n_,y_]:=Module[{x,i,lhs, res,sols},
res={};
lhs=Mod[yˆ2,n];
sols=Values[Solve[xˆ3+b*x+c==lhs,Modulus->n]];
For[i=1,i<=Length[sols],i++,

x=sols[[i,1]];
res=Append[res,List[x,y]]

];
res

]

ECPointAdd[b_,c_,n_,pt1_,pt2_]:=Module[{x,y,invy,m},
If[pt1==-1,Return[-1]];
If[pt2==-1,Return[-1]];
If[pt1[[1]]==Infinity,Return[pt2]];
If[pt2[[1]]==Infinity,Return[pt1]];
If[pt1==pt2,

If[Mod[2*pt1[[2]],n]==0,Return[List[Infinity,Infinity]]];
If[GCD[2*pt1[[2]],n]>1,Return[-1]];
invy=ModularInverse[2*pt1[[2]],n];
m=Mod[(3*pt1[[1]]ˆ2+b)*invy,n];,
If[Mod[pt1[[1]],n]==Mod[pt2[[1]],n],Return[List[Infinity,Infinity]]];
If[GCD[pt1[[1]]-pt2[[1]],n]>1,Return[-1]];
invy=ModularInverse[pt1[[1]]-pt2[[1]],n];
m=Mod[(pt1[[2]]-pt2[[2]])*invy,n];

];
x=Mod[mˆ2-pt1[[1]]-pt2[[1]],n];
y=Mod[m*(pt1[[1]]-x)-pt1[[2]],n];
List[x,y]

]

Cryptography Notes: Technology Guides 46



CHAPTER 1. INTRODUCTION TO MATHEMATICA

ECPointScalarMult[b_,c_,n_,m_,pt1_]:=Module[{retpt,newy, t, pt},
If[pt1==-1,Return[-1]];
retpt=List[Infinity,Infinity];
t = m;
pt=pt1;
If[t < 0,t=-t;newy=Mod[-pt[[2]],n];pt=List[pt[[1]],newy]];
While[t > 0,

If[Mod[t,2]==1,retpt=ECPointAdd[b,c,n,retpt,pt]];
pt=ECPointAdd[b,c,n,pt,pt];
t=Floor[t/2];

];
retpt

]

ECPointFactorialScalarMult[b_,c_,n_,m_,pt1_]:=Module[{pt,i},
pt=pt1;
For[i=2,i<=m,i++,pt=ECPointScalarMult[b,c,n,i,pt]];
pt

]

ECPointOrder[b_,c_,n_,pt1_]:=Module[{t, pt,i,r},
If[pt1==-1,Return[-1]];
retpt=List[Infinity,Infinity];
t = True;
i=1;
While[t,

pt=ECPointScalarMult[b,c,n,i,pt1];
If[pt==-1,Return[-1]];
If[pt[[1]]==Infinity,r=i;t=False];
i++;

];
r

]

Cryptography Notes: Technology Guides 47



Chapter 2

Introduction to Maxima

2.1 What is Maxima?

Maxima is an open-source computer algebra system, the following description was taken
from the Maxima project site at sourceforge (http://maxima.sourceforge.net/).[3]
Computer algebra systems are programs that are capable of doing exact mathematical com-
putations in a wide range of mathematical subjects. That is, they can solve equations pro-
ducing exact answers as opposed to giving decimal approximations. They can do symbolic
algebra, trigonometry, calculus, differential equations, and so on. Some computer algebra
systems have very specific uses, such as finite group theory, while others are built to be more
comprehensive. Maxima is one of the most comprehensive open-source computer algebra
systems.

Maxima is a system for the manipulation of symbolic and numerical expressions,
including differentiation, integration, Taylor series, Laplace transforms, ordinary
differential equations, systems of linear equations, polynomials, sets, lists, vec-
tors, matrices and tensors. Maxima yields high precision numerical results by
using exact fractions, arbitrary-precision integers and variable-precision floating-
point numbers. Maxima can plot functions and data in two and three dimensions.

The Maxima source code can be compiled on many systems, including Windows,
Linux, and MacOS X. The source code for all systems and precompiled binaries
for Windows and Linux are available at the SourceForge file manager.

Maxima is a descendant of Macsyma, the legendary computer algebra system
developed in the late 1960s at the Massachusetts Institute of Technology. It is
the only system based on that effort still publicly available and with an active
user community, thanks to its open source nature. Macsyma was revolutionary in
its day, and many later systems, such as Maple and Mathematica, were inspired
by it.

The Maxima branch of Macsyma was maintained by William Schelter from 1982
until he passed away in 2001. In 1998 he obtained permission to release the
source code under the GNU General Public License (GPL). It was his efforts and

48

http://maxima.sourceforge.net/


CHAPTER 2. INTRODUCTION TO MAXIMA

skill which have made the survival of Maxima possible, and we are very grateful
to him for volunteering his time and expert knowledge to keep the original DOE
Macsyma code alive and well. Since his death, a group of users and developers
has formed to bring Maxima to a wider audience.

Maxima is updated very frequently, to fix bugs and improve the code and the
documentation. We welcome suggestions and contributions from the community
of Maxima users. Most discussion is conducted on the Maxima mailing list.

You can download Maxima from the Maxima project site at sourceforge,

http://maxima.sourceforge.net/

This introduction to Maxima is not designed to be a general introduction to the software
package. There are far better resources for that online than I could ever hope to write. Here
we simply concentrate on what you need to do the cryptography exercises and examples in
this set of notes.

As with all computer algebra systems, there are numerous ways to input your calculations
to obtain the desired results, some methods are slicker than others. The downside of the
slick methods is that they are usually hard to read and unless you are already familiar with
the ins and outs of the system it is usually unclear what is happening. Since we are assuming
that you have a limited exposure to Maxima, we do not always take the slickest route to
produce the needed calculation. In many cases we will break a calculation down into several
steps, where is could be done in a single command. This is done for readability and clarity of
the operation. As you become more acquainted with Maxima you will see other equivalent
methods to those in this set of notes.

If you are familiar with Maxima you probably already know everything in this introduc-
tion. In this case you may want to simply skim over these pages and read the unfamiliar
sections.

There are several Maxima scripts that we discuss in this section that do specific operations
on matrices and elliptic curves which are not included in the Maxima CAS. These can all
be found in the CryptDS.mac file that is on my web site. To load all of the functions
download the CryptDS.mac file then in Maxima,

1. Select File > Load Package from the main menu.

2. Navigate to the CryptDS.mac file.

3. Select it and click Open.

At this point all of the functions will be loaded into the Maxima session.

Cryptography Notes: Technology Guides 49

http://maxima.sourceforge.net/


CHAPTER 2. INTRODUCTION TO MAXIMA

2.2 The User Interface

Most computer algebra systems have very similar interfaces. There is usually a graphical
interface for command input that is where the user enters their calculation commands and
a calculation engine the background where the calculations are performed. There are many
different graphical interfaces that link up with Maxima. The one pictured below is wxMaxima
, which is available on most major platforms. If you are using a different user interface then
your screen will, of course, look different and the menu options we discuss here may or may
not be available in your program.

Figure 2.1: User Interface to Maxima

When the user types in a command and sends it for calculation, the command is trans-
ferred to the engine, calculated there, and the result is transferred back to the graphical
interface. The engine operations are hidden from the user and you will probably never need
to deal with the engine but the reason we are going into this is that on occasions something,
usually external to Maxima, causes the interface to lose the communication link with the
engine. This happens rarely but if you notice that Maxima is not doing the calculations you
send it and you know you are using the correct syntax then you may have lost the engine
link. In these cases, there is a menu option, under the Maxima menu, to restart the Maxima
engine. Selecting this should reestablish the link for you. Another option is to close Maxima
and restart it, the good old reboot solution.

As you can see from the above image, the “In” lines (%i1) are what the user has input
into Maxima and the “Out” lines (%o1) are Maxima’s responses to the inputs. On the first
line we simply asked Maxima to factor a number for us. The one of the Maxima commands
for this is factor followed by parentheses containing the number to be factored.

This in and out tracking comes in handy when you want to use a previous input or output.

Cryptography Notes: Technology Guides 50



CHAPTER 2. INTRODUCTION TO MAXIMA

Figure 2.2: User Interface to Maxima with Commands

The % will automatically take the last output that was done. Be careful here, this is not
always the output right above the new input. For example, if you go up several commands
and reevaluate a command, that is the last output. You can also use the %o1 notation for
output number 1, %o2 for output number 2, and so on. You will notice that if you redo
a command, it will be renumbered with a different input and output number, the original
input and output number still have the same values.

(%i1) diff(xˆ2,x);

(%o1) 2 · x

(%i2) %o1*5;

(%o2) 10 · x

(%i3) %ˆ2;

(%o3) 100 · x2

(%i4) %o2;

(%o4) 10 · x
Then if we reevaluate the second input it is labeled number 5 but then if we add a new

entry that references number 2 (%o2+7) it uses the second output from the session.

(%i1) diff(xˆ2,x);

Cryptography Notes: Technology Guides 51



CHAPTER 2. INTRODUCTION TO MAXIMA

(%o1) 2 · x

(%i5) %o1*5;

(%o5) 10 · x

(%i3) %ˆ2;

(%o3) 100 · x2

(%i4) %o2;

(%o4) 10 · x

(%i6) %o2+7;

(%o6) 10 · x+ 7

It is better practice to assign an output to a variable and use the variable name when
needed, for example,

(%i1) D:diff(xˆ2,x);

(%o1) 2 · x

(%i2) 3*Dˆ2;

(%o2) 12 · x2

We will discuss assigning variables in more detail in the next section.
All Maxima commands are lowercase and multi-word commands usually separate the

words with an underscore. When applying a command to some input, the input is sur-
rounded by parentheses, like we would write f(x) to apply the function f to the input x. In
Maxima parentheses are used as grouping symbols for expressions as well, square brackets
are to delimit lists, and curly brackets are used to delimit sets. Matrices are treated a little
differently in Maxima than they are in Mathematica. We will discuss matrix syntax in the
section on matrices.

Table 2.1: Brackets in Maxima

Bracket Usage
( ) Grouping and Function Input
[ ] Lists
{ } Sets

Once you have input a command you send it to the engine for evaluation by selecting
Shift + Enter from the keyboard. Also, if your keyboard has a keypad, then simply selecting
the keypad Enter (with no Shift) will work as well. When you do this, there may be a slight
to a long pause while the calculation is being done and then the result will be displayed in

Cryptography Notes: Technology Guides 52



CHAPTER 2. INTRODUCTION TO MAXIMA

the out line. If a calculation is taking too long to complete you can abort (Interrupt) the
calculation either from the Maxima menu, click on the interrupt stop sign on the menu bar,
or by typing Ctrl+G from the keyboard.

As we pointed out above, computer algebra systems do exact arithmetic, unless otherwise
told. So the user can easily input something into the computer algebra system that the
computer will not be able to handle or not able to handle in a reasonable amount of time.
For example, asking the computer to calculate 1000000! or asking it to factor the 600 digit
semiprime that Amazon uses for customer purchases. So if Maxima is taking a very long
time to do a calculation, make sure you did not inadvertently ask it a bad question, and if
you did, abort the calculation.

Maxima also has a couple command assistant interfaces, one is through the menu system
and the other is through Panes . The Panes are a quick way to call some of the menu
commands. With the Panes or the menu commands the command is applied to the last
output if the command does not need any input and if it does, a dialog box will appear
asking for user input on the command. If you find these panes or menu options to be useful
then by all means use them. These notes will be concentrating on the commands you need
to aide you in cryptography calculations, so we will not be using Maxima’s pane system,
and seldom using the menu options. Most of the pane operations are self-explanatory and
there are numerous guides to using them on the Internet if you are interested. The pane
and menu systems are a nice way to get started with Maxima, to learn some of its functions
and syntax. Once you are familiar with Maxima you will probably find that typing in the
commands is quicker.

Maxima does have a substantial help system, although it is not as nice as the one in
Mathematica. There are examples for most commands, cross links for related topics, de-
scriptions of the available options for a command and descriptions of what the command
does and in some cases descriptions of the mathematical methods and algorithms used in
the calculation.

2.3 Basic Calculations

2.3.1 Numeric Calculations

When starting out with any computer algebra system it is good to treat it simply as a
fancy calculator, just to get the feel for how it works and basic expression format. Addition,
subtraction, multiplication, division and powers are done with the standard mathematics
symbols +-*/ˆ as you would expect. There are several basic numerical types used in
Maxima but most of the time we will be working in either exact mode or approximate mode.
Maxima has a couple different options in approximate mode that we will look at a little
later.

Computer algebra systems use exact mode whenever possible, this is how they are con-
structed and frankly what their main purpose is. When calculations are done in exact mode
the outputs are integers, rational numbers or expressions involving them. Approximate mode
is when we have decimal approximations as our output. In the example below, inputs 1–4

Cryptography Notes: Technology Guides 53



CHAPTER 2. INTRODUCTION TO MAXIMA

are all in exact mode, note the
√

2 and log 25. Since these numbers are irrational Maxima
will not approximate them. Inputs 5 and 6 produce approximate outputs since we used a
decimal in the input expression.

(%i1) 123+456;

(%o1) 579

(%i2) 2ˆ(1/2);

(%o2)
√

2

(%i3) 6463629734643562112/21854943257648216491454;

(%o3)
3231814867321781056

10927471628824108245727
(%i4) log(25);

(%o4) log (25)

(%i5) log(25.0);

(%o5) 3.2188758248682

(%i6) 2.0ˆ(1/2);

(%o6) 1.414213562373095

So the easiest way to force Maxima into approximation mode is to use decimal numbers
in the expression. You can also use a couple commands to convert an exact expression
into an approximate expression. The float command and numer option will convert
the expression to decimal and the bfloat command will convert the expression into a
“Bigfloat”, this is used if you want to see more decimal places to the approximation. In
cryptography, we usually deal primarily with integers so there will be few times when we
need to get approximations. Nonetheless, here are some examples,

(%i1) 2ˆ(1/2);

(%o1)
√

2

(%i2) float(%);

(%o2) 1.414213562373095

(%i3) float(2ˆ(1/2));

(%o3) 1.414213562373095

(%i4) 2ˆ(1/2), numer;

(%o4) 1.414213562373095

Cryptography Notes: Technology Guides 54



CHAPTER 2. INTRODUCTION TO MAXIMA

(%i5) bfloat(2ˆ(1/2));

(%o5) 1.414213562373095b0

(%i6) fpprec : 200;

(%o6) 200

(%i7) bfloat(2ˆ(1/2));

(%o7) 1.4142135623730950488016887242[143digits]5927557999505011527820605715b0

(%i8) set_display(’ascii)$

(%i9) bfloat(2ˆ(1/2));

(%o9) 1.4142135623730950488016887242096980785696718753769480731766797379907324
784621070388503875343276415727350138462309122970249248360558507372126441214970
999358314132226659275055927557999505011527820605715b0

(%i10)set_display(’xml)$

(%i11)bfloat(2ˆ(1/2));

(%o11) 1.4142135623730950488016887242[143digits]5927557999505011527820605715b0

Notice that the big float (bfloat command) produces the same number of decimal
places as the float command, unless you set fpprec to a larger number. The fpprec
internal variable controls the floating point precision of the session. Also note with the big
float there is a b0 at the end. This is read just like the e0 scientific notation you get in other
programs and calculators.

Maxima has several ways to display lines that are too long or other multi-line outputs.
In wxMaxima, the default is xml mode which in some cases produces a statement like,
[143digits] in the middle of a number. This can be changed by either going into ascii or
none mode . Modes can be changed with the set_display command. The wxMaxima
interface has menu options for changing the precision, conversion to floats and bfloats, and
changing the 2d display. The conversions to floats and bigfloats as well as precision changing
are under the Numeric menu and changing the 2d display is under the Maxima menu. The
above examples show the 2d display for xml and ascii, the none display option will put the
entire number on a single line, with no elimination of the middle of the number.

2.3.2 Algebra

Computer algebra systems will also do algebra, imagine that. So they will do computations
with variables just as we would. One thing to be careful with here is assigning values to
variables. Once a variable is assigned a value it will replace the variable with that value in all
expressions until the variable is reset. Assignment is done with the colon, so the command

Cryptography Notes: Technology Guides 55



CHAPTER 2. INTRODUCTION TO MAXIMA

x:3 assigns the value 3 to the variable x. Then any expression with an x in it is evaluated
as if x is the value 3. The command, x:’x resets x back to x.

(%i1) xˆ2+3*x-2*xˆ2+x-5;

(%o1) − x2 + 4 · x− 5

(%i2) x:3;

(%o2) 3

(%i3) xˆ2+3*x-2*xˆ2+x-5;

(%o3) − 2

(%i4) x:’x;

(%o4) x

(%i5) xˆ2+3*x-2*xˆ2+x-5;

(%o5) − x2 + 4 · x− 5

Also note that for multiplication we must use the * symbol, juxtaposition is not sup-
ported in Maxima . Also note that expressions are automatically simplified, that is the
easy simplifications are done automatically. More complex expressions will not be simplified
until you give Maxima a command to do so. Maxima has over 20 different simplification
commands. At first this is a bit overwhelming and confusing on which one to use when, but
once you see some of the differences in the outputs you will be glad to have this flexibility
instead of a single simplify command that may or may not produce something you want.
Also, some of the different simplification commands work on specific types of expressions,
such as logarithms, trigonometric functions, or complex valued expressions. In wxMaxima,
the simplification commands can be invoked from the Simplify menu.

(%i1) ((x+1)ˆ2*(x-1)ˆ2)/(xˆ2-1);

(%o1)
(x− 1)2 · (x+ 1)2

x2 − 1
(%i2) ratsimp(%);

(%o2) x2 − 1

The ratsimp command above is the one you will probably use the most, it simplifies
expressions and subexpressions and puts the result into a rational type form. You can find
a more specific description in the Maxima help system.

Cryptography Notes: Technology Guides 56



CHAPTER 2. INTRODUCTION TO MAXIMA

2.3.3 Execution Timing

In cryptography, and other computationally intensive areas in mathematics and computing,
one wants to know how different algorithms that accomplish the same task stack up against
each other. Which algorithm factors integers the fastest or finds the discrete logarithm
fastest? Or better questions are which algorithms are fastest in which situations? The way
this is usually done, theoretically, is by counting the number of mathematical operations
that need to be done for the algorithm to come up with a solution. We tend to look at best,
average, and worst case scenarios and compare them.

Another method is to do empirical testing. Run several examples using each algorithm
and compare the timings. With computer algebra systems, many complex tasks, such as
factoring and finding discrete logarithms will implement several different algorithms that
work together, and even in parallel. So separating them is sometime difficult. Nonetheless,
we would still like to know execution times for processes run on Maxima.

(%i1) factor(64531706501604716463819653731111);

(%o1) 17 · 1376431130111329 · 2757844291912727

(%i2) if showtime#false then showtime:false else showtime:all$

Evaluation took 0.0000 seconds (0.0000 elapsed) using 184 bytes.

(%i3) factor(64531706501604716463819653731111);

Evaluation took 3.9610 seconds (3.9940 elapsed) using 142.667 MB.
(%o3) 17 · 1376431130111329 · 2757844291912727

In wxMaxima, under the Maxima menu, there is an option to toggle the time display.
When turned on, Maxima will display the amount of execution time and the amount of
memory used to complete the process.

2.4 Defining Functions

Maxima has hundreds of built-in functions, trigonometric, logarithmic, hyperbolic, complex
valued, exponential, combinatorial, . . . . In cryptography, we do not tend to need transcen-
dental functions too often and we will look at a few discrete mathematics and number theory
functions in the following sections and throughout the body of these notes. There will be
times when you will want to define your own functions, this tends to make typing and ex-
pression syntax easier when you are dealing with longer expressions. In Maxima, to define
a function, start with the function name, a list of variables in parentheses, := and then the
expression. For example, to define the function f(x) = x2 − 3x+ 5,

(%i1) f(x):=xˆ2-3*x+5;

(%o1) f (x) := x2 − 3 · x+ 5

Cryptography Notes: Technology Guides 57



CHAPTER 2. INTRODUCTION TO MAXIMA

(%i2) f(t);

(%o2) t2 − 3 · t+ 5

(%i3) f(5);

(%o3) 15

(%i4) f(-x);

(%o4) x2 + 3 · x+ 5

(%i5) f(x+h);

(%o5) (x+ h)2 − 3 · (x+ h) + 5

After the function is defined, you can evaluate the function at values, or expressions, by
placing the value or expression in the parentheses, just like we would do in mathematics.
Functions can be defined on more than one variable, for example,

(%i1) g(x, y):= xˆ2-yˆ2;

(%o1) g (x, y) := x2 − y2

(%i2) g(2, 3);

(%o2) − 5

(%i3) g(t, 5);

(%o3) t2 − 25

(%i4) g(17, x+h);

(%o4) 289− (x+ h)2

We will discuss Maxima lists later in these notes but will give a quick example here. Most
computer algebra systems store and manipulate information in lists, this is the basis to what
are called functional programming languages, like LISP. So computer algebra systems tend
to work very efficiently on lists. In Maxima, a list is a set of expressions separated by commas
and delimited by square brackets. The following is an example of how you can evaluate a
function on a list.

(%i1) g(x, y):= xˆ2-yˆ2;

(%o1) g (x, y) := x2 − y2

(%i2) g([1,2,3], 7);

(%o2) [−48,−45,−40]

Cryptography Notes: Technology Guides 58



CHAPTER 2. INTRODUCTION TO MAXIMA

(%i3) g(1, 7);

(%o3) − 48

(%i4) g(2, 7);

(%o4) − 45

(%i5) g(3, 7);

(%o5) − 40

(%i6) g([1,2,3], [7, 8, 9]);

(%o6) [−48,−60,−72]

(%i7) g(2, 8);

(%o7) − 60

(%i8) g(3, 9);

(%o8) − 72

Functions can also be composed with each other and themselves. Furthermore, you can
define a function using other function definitions.

(%i1) f(x):=sqrt(x+1);

(%o1) f (x) :=
√
x+ 1

(%i2) f(f(x));

(%o2)

√√
x+ 1 + 1

(%i3) f(f(f(x)));

(%o3)

√√√
x+ 1 + 1 + 1

(%i4) f(f(f(f(x))));

(%o4)

√√√√
x+ 1 + 1 + 1 + 1

(%i5) f(f(f(f(2))));

(%o5)

√√√√
3 + 1 + 1 + 1

Cryptography Notes: Technology Guides 59



CHAPTER 2. INTRODUCTION TO MAXIMA

(%i6) h(x):=f(f(f(f(x))));

(%o6) h (x) := f (f (f (f (x))))

(%i7) h(t);

(%o7)

√√√√
t+ 1 + 1 + 1 + 1

(%i8) h(2);

(%o8)

√√√√
3 + 1 + 1 + 1

Another composition example is below.

(%i1) f(x):=sqrt(x+1);

(%o1) f (x) :=
√
x+ 1

(%i2) g(x):=sin(x);

(%o2) g (x) := sin (x)

(%i3) f(g(x));

(%o3)
√

sin (x) + 1

(%i4) g(f(x));

(%o4) sin
(√

x+ 1
)

As with any computer program you need to be careful what you tell it to do. It will do
exactly what you tell it. In the below string of examples we define a function f(x) and then
we define the value of x to be 5. Note that in line 3, f(x) is now the expression defined at
5, since x is equal to 5. Similarly, input number 5 is asking for f(6). Also note that f(3),
f(t), and f(t + 1) act as we would expect. Also, when we redefine x as x, f(x) returns the
expression.

(%i1) f(x):=xˆ2+x-1;

(%o1) f (x) := x2 + x− 1

(%i2) x:5;

(%o2) 5

(%i3) f(x);

(%o3) 29

Cryptography Notes: Technology Guides 60



CHAPTER 2. INTRODUCTION TO MAXIMA

(%i4) f(3);

(%o4) 11

(%i5) f(x+1);

(%o5) 41

(%i6) f(t);

(%o6) t2 + t− 1

(%i7) f(t+1);

(%o7) (t+ 1)2 + t

(%i8) x:’x;

(%o8) x

(%i9) f(x);

(%o9) x2 + x− 1

2.5 Some Discrete Mathematics & Number Theory Com-

mands

In this section we will look at a few commands that are related to the number theory and
discrete mathematics that we tend to encounter most in the area of cryptography.

2.5.1 Modulus

To compute a simple modulus, a (mod n) use the mod(a, n) command.

(%i1) mod(35, 21);

(%o1) 14

(%i2) mod(-123, 29);

(%o2) 22

2.5.2 Power Calculations with a Modulus

Frequently we need to raise a number to a very large power modulo another number, that is,
calculate ab (mod n), where b could be a very large number. The way not to do this is with
the command mod(aˆb, n). Although this will work fine for small values of a and b, when

Cryptography Notes: Technology Guides 61



CHAPTER 2. INTRODUCTION TO MAXIMA

b gets large the calculation may become too large for your, or anyone’s, computer to handle.
The reason is that with this command, the program will first calculate ab and then take
the result modulo n. If b is sufficiently large, the calculation of ab could produce a number
that is too large to fit in your computer’s memory. For this reason, a better computational
method was devised. The command in Maxima for this is, power_mod(a, b, n). The
exponentiation algorithm used here is very fast, it raises a to the b power by successive
squares and multiplications, each taken modulo n at each stage so that the intermediate
calculations do not get too large.

(%i1) power_mod(5, 12345, 98765);

(%o1) 82160

(%i2) power_mod(12345, 67890, 1000000000);

(%o2) 931640625

2.5.3 Inverse Calculations with a Modulus

The power modulus command will also find inverses of numbers modulo another, as long as
it exists, that is, a−1 (mod n). Maxima also has a special command for this as well. The
inv_mod(a, n) command is equivalent to the power_mod(a, -1, n) command. If the
inverse does not exist then both the inv_mod(a, n) and the power_mod(a, -1, n)
commands will return false. The algorithm used here is the extended euclidean algorithm,
followed by a modulus if needed.

(%i1) inv_mod(7, 23);

(%o1) 10

(%i2) inv_mod(7, 232);

(%o2) 199

(%i3) power_mod(7, -1, 23);

(%o3) 10

(%i4) power_mod(7, -1, 232);

(%o4) 199

2.5.4 Greatest Common Divisor

To calculate the greatest common divisor of two numbers simply use the gcd(a, b) com-
mand. The algorithm used here is the euclidean algorithm

Cryptography Notes: Technology Guides 62



CHAPTER 2. INTRODUCTION TO MAXIMA

(%i1) gcd(7, 23);

(%o1) 1

(%i2) gcd(82382464, 22689746432);

(%o2) 128

2.5.5 Extended Greatest Common Divisor

We know that if d = gcd(a, b), then there exists numbers r and s such that ar + bs = d.
To calculate the numbers r, s, and d we can use the gcdex(a, b) command. This will
return the list [r, s, d]. The algorithm used here is the extended euclidean algorithm. Many
of the commands we are discussing in this section also work on polynomials with integer
and in some cases rational and real coefficients. Maxima includes integer versions of some
of these where the operands work only on integers. The integer version of this command is
igcdex(a, b), so here a and b must be integers.

(%i1) gcdex(23, 7);

(%o1) [−3, 10, 1]

(%i2) igcdex(23, 7);

(%o2) [−3, 10, 1]

(%i3) 7*10-3*23;

(%o3) 1

(%i4) gcdex(2346713056, 3671064);

(%o4) [1508,−963983, 536]

(%i5) igcdex(2346713056, 3671064);

(%o5) [1508,−963983, 536]

(%i6) 2346713056*1508-963983*3671064;

(%o6) 536

2.5.6 Greatest Common Divisor of Several Numbers

To calculate the greatest common divisor of several numbers use the ezgcd(a, b, c, ...)
command, yes the command is ezgcd, believe it or not. What is returned is a list of num-
bers, the first is the GCD of the list of numbers and the rest are the inputs all divided by
the GCD. The algorithm used here is simply multiple uses of the euclidean algorithm.

Cryptography Notes: Technology Guides 63



CHAPTER 2. INTRODUCTION TO MAXIMA

(%i1) ezgcd(7, 14, 21, 35);

(%o1) [7, 1, 2, 3, 5]

2.5.7 Least Common Multiple

To calculate the least common multiple of several numbers use the lcm(a, b, c, ...)
command.

(%i1) lcm(5, 15, 35);

(%o1) 105

2.5.8 Chinese Remainder Theorem

The Chinese Remainder Theorem is really an algorithm for solving a system of congruences,

x = r1 (mod m1)

x = r2 (mod m2)

x = r3 (mod m3)

...

x = rn (mod mn)

where the set {m1,m2, . . . ,mn} are positive and pairwise coprime integers. The Max-
ima command to solve this system is chinese([r_1,..., r_n], [m_1,..., m_n]).
Note that the residues and the moduli are in lists and the corresponding entries define each
of the congruences. If the set of moduli are coprime the Chinese Remainder Theorem guar-
antees a solution. If, on the other hand, moduli are not coprime then there may or may not
be a solution. If Maxima cannot find a solution to the system it will return false.

(%i1) chinese([1, 2, 3, 4],[5, 7, 11, 24]);

(%o1) 8836

2.5.9 Functions for Primes

There are several functions in Maxima for working with prime numbers. The first we will
look at is primality testing. The Maxima command to test if a number is prime (or probably
prime) is primep(n). If primep(n) returns false, n is a composite number and if it returns
true, n is a prime number with very high probability. For n less than 341550071728321 a
deterministic version of Miller-Rabin’s test is used, so if primep(n) returns true in this
case, then n is a prime number.

If n is bigger than 341550071728321, then primep(n) uses primep_number_of_tests
Miller-Rabin’s pseudo-primality tests and one Lucas pseudo-primality test. The probability

Cryptography Notes: Technology Guides 64



CHAPTER 2. INTRODUCTION TO MAXIMA

that a non-prime n will pass one Miller-Rabin test is less than 1
4
. Using the default value 25

for primep_number_of_tests, the probability of n being composite when the command
says that it is prime is less than 10−15. If we increase the number of tests to 100 then the
probability of n being composite when the command says that it is prime is less than 10−60.

(%i1) primep(350193560150161);

(%o1) false

(%i2) primep(6731861687);

(%o2) true

(%i3) primep(8548025620465043057345170485104570143561344565718267);

(%o3) true

(%i4) primep_number_of_tests;

(%o4) 25

(%i5) primep_number_of_tests:100;

(%o5) 100

(%i6) primep(8548025620465043057345170485104570143561344565718267);

(%o6) true

(%i7) 1/4.0ˆ(100);

(%o7) 6.223015277861142 · 10−61

So in our above examples, 350193560150161 is definitely a composite number, 6731861687
is definitely prime, and 8548025620465043057345170485104570143561344565718267 is prob-
ably prime with the probability of it actually being composite being less than 10−60.

Maxima also has functions for finding the next probable prime and the previous probable
prime. These functions use the primep(n) function for verification of the prime, so if the
returned value is less than 341550071728321, the number is definitely prime and if the return
value larger, then it is a probable prime, with the probably of being composite as above. To
find the next prime number larger than n use the command next_prime(n) and to find
the previous prime number smaller than n use the command prev_prime(n).

(%i9) next_prime(350193560150161);

(%o9) 350193560150221

(%i10)primep(350193560150221);

(%o10) true

Cryptography Notes: Technology Guides 65



CHAPTER 2. INTRODUCTION TO MAXIMA

(%i11)prev_prime(643782540243018347051875041875015);

(%o11) 643782540243018347051875041874789

(%i12)primep(643782540243018347051875041874789);

(%o12) true

2.5.10 Jacobi and Legendre Symbols

Recall that the Legendre symbol is defined as follows, for an odd prime n,(m
n

)
=


0, if m ≡ 0 (mod n)
1, if 0 6≡ m ≡ x2 (mod n), for some x
−1, otherwise

So for an odd prime n, the Legendre symbol will tell us if an integer m is a quadratic residue
modulo n. The Jacobi symbol is a generalization of the Legendre symbol, it is defined for
any odd number n as (m

n

)
=

(
m

p1

)a1 (m
p2

)a2

· · ·
(
m

pr

)ar

where all of the pi are distinct primes and n = pa11 p
a2
2 · · · parr . Note that each of the terms

in the above product are Legendre symbols, since all of the pi are prime. One big difference
between the Jacobi and Legendre symbols is that if n is not prime and

(
m
n

)
= 1 then we are

not guaranteed that m is a quadratic residue modulo n. On the other hand, if
(
m
n

)
= −1

then we know that m is not a quadratic residue modulo n.
In Maxima, the command to do both of these symbols is jacobi(m, n). If n is prime,

then this is the Legendre symbol and we can deduce if m is a quadratic residue modulo n.
If n is not prime then we are working with the Jacobi symbol.

(%i1) jacobi(5, 23);

(%o1) − 1

(%i2) jacobi(3, 23);

(%o2) 1

(%i3) jacobi(19, 231);

(%o3) 1

(%i4) jacobi(17, 231);

(%o4) − 1

(%i5) jacobi(3, 231);

(%o5) 0

Cryptography Notes: Technology Guides 66



CHAPTER 2. INTRODUCTION TO MAXIMA

So in our above examples,

1. 5 is not a quadratic residue modulo 23.

2. 3 is a quadratic residue modulo 23. In fact, 3 ≡ 72 (mod 23).

3. We do not know if 19 is a quadratic residue modulo 231, but it is possible.

4. 17 is not a quadratic residue modulo 231.

5. Since gcd(3, 231) 6= 1, one of the Legendre symbols in the product definition of the
Jacobi symbol is 0, making the product 0.

2.5.11 Continued Fractions

A continued fraction is when you take a number x and express it in the form,

x = a1 +
1

a2 +
1

a3 +
1

a4 +
1

. . .

For some values of x their continued fraction representation will terminate, some will
repeat and some will neither terminate nor repeat. For example,

√
2 = 1 +

1

2 +
1

2 +
1

. . .

1 +
√

5

2
= 1 +

1

1 +
1

1 +
1

. . .
5742

2131
= 2 +

1

1 +
1

2 +
1

3 +
1

1 +
1

1 +
1

1 +
1

11 +
1

5

There are several Maxima commands that come in handy when working with continued
fractions and we will create a couple that will make some of the computations in these notes

Cryptography Notes: Technology Guides 67



CHAPTER 2. INTRODUCTION TO MAXIMA

a little easier. Maxima’s cf(n) command will return a list representation of the continued
fraction representation of n. Here n can be any real number, it does not have to be rational.
So an output of [a1, a2, a3, a4, . . .] is a representation for,

a1 +
1

a2 +
1

a3 +
1

a4 +
1

. . .

If the number has a terminating continued fraction representation, Maxima will produce
the entire representation, such as, in output number 5 below. In the case where the continued
fraction representation is repeating, Maxima will halt the representation once it notices that
it has finished a period of the repetition. So in output number 1, Maxima gives [1, 2] for the
representation of

√
2. Since a terminating continued fraction representation would result in a

rational number, it is clear that Maxima is telling us that the representation is [1, 2, 2, 2, . . .].
If you would like to see more periods of repetition, as I usually do, all you need to do is set
the cflength variable to the number of periods you want to see. Here we set it to 3 in
input number 2 and then reran

√
2.

(%i1) cf(sqrt(2));

(%o1) [1, 2]

(%i2) cflength:3;

(%o2) 3

(%i3) cf(sqrt(2));

(%o3) [1, 2, 2, 2]

(%i4) cf((1 + sqrt(5))/2);

(%o4) [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2]

(%i5) lst:cf(5742/2131);

(%o5) [2, 1, 2, 3, 1, 1, 1, 11, 5]

To view a list as a continued fraction use the cfdisrep(L) where L is a list. This will
produce a nice continued fraction layout. To simplify the fraction, just apply the ratsimp
command to the result. This can be done through the simplify menu as well.

(%i6) cfdisrep (lst);

(%o6) 2 +
1

1 + 1
2+ 1

3+ 1

1+ 1

1+ 1

1+ 1

11+1
5

Cryptography Notes: Technology Guides 68



CHAPTER 2. INTRODUCTION TO MAXIMA

(%i7) ratsimp(cfdisrep(lst));

(%o7)
5742

2131
(%i8) ratsimp(cfdisrep([1,2,2,2,2,2,2,2,2,2,2]));

(%o8)
8119

5741
(%i9) float(%), numer;

(%o9) 1.414213551646055

There are times when we will want to find the continued fraction representation of a
number and then look at successive approximations by taking more and more of the continued
fraction. For example, with

√
2, we would look at

1 +
1

2
=

3

2
1 +

1

2 + 1
2

=
7

5
1 +

1

2 + 1
2+ 1

2

=
17

12

and so on. Maxima does not have a built-in function to convert a list to a simplified continued
fraction but it is easy enough to create. The function,

from_cf(L):=ratsimp(cfdisrep(L))

will take in a list, convert it to the displayed continued fraction and then simplify the result.
We will go one step further, the following command will take the first n entries from input
list, L, and convert that to a continued fraction and simplify the result.

from_cf_n(L, n):=ratsimp(cfdisrep(makelist(L[i], i, 1, n)))

Some examples of these functions are below.

(%i10)from_cf(L):=ratsimp(cfdisrep(L));

(%o10) from cf (L) := ratsimp (cfdisrep (L))

(%i11)from_cf(lst);

(%o11)
5742

2131
(%i12)from_cf_n(L, n):=ratsimp(cfdisrep(makelist(L[i], i, 1, n)));

(%o12) from cf n (L, n) := ratsimp (cfdisrep (makelist (Li, i, 1, n)))

(%i13)from_cf_n(lst, 4);

(%o13)
27

10

Cryptography Notes: Technology Guides 69



CHAPTER 2. INTRODUCTION TO MAXIMA

(%i14)from_cf([2,1,2,3]);

(%o14)
27

10
(%i15)from_cf_n(lst, 8);

(%o15)
1129

419
(%i16)from_cf([2,1,2,3,1,1,1,11]);

(%o16)
1129

419

2.5.12 Solving Equations

Of course, we need to solve equations. Maxima has a very versatile equation solver. We will
only be using a small portion of what it is capable of doing. For example, it can find the,
relatively ugly, exact solutions to x3 − 3x2 + 2x+ 5 = 0.

(%i1) solve(xˆ3-3*xˆ2+2*x+5=0, x);

(%o1) [x =

√
3·i
2
− 1

2

3 ·
(√

671

2·3
3
2
− 5

2

) 1
3

+

(√
671

2 · 3 3
2

− 5

2

) 1
3

·

(
−
√

3 · i
2
− 1

2

)
+ 1, x =

(√
671

2 · 3 3
2

− 5

2

) 1
3

·

(√
3 · i
2
− 1

2

)
+

−
√
3·i
2
− 1

2

3 ·
(√

671

2·3
3
2
− 5

2

) 1
3

+ 1, x =

(√
671

2 · 3 3
2

− 5

2

) 1
3

+
1

3 ·
(√

671

2·3
3
2
− 5

2

) 1
3

+ 1]

A little more down to earth, the solutions to 3x2 − 2x− 5 = 0 are 5
3

and −1.

(%i1) solve(3*xˆ2-2*x-5=0, x);

(%o1) [x =
5

3
, x = −1]

Several things to notice about the syntax to the solve function. When you are solving
a single equation, the first argument is the equation to be solved and the second argument
is the variable to solve the equation for. An equation in Maxima is simply two Maxima
expressions with an equal sign between them. Although this is the preferred syntax, if the
equation is simply an expression (no equal sign) Maxima will assume that the expression is
set to equal 0. Also, if there is only one variable in the equation, then the variable to be
solved for can be omitted and Maxima will take the one in the equation. So the following
inputs also give the same solutions.

(%i2) solve(3*xˆ2-2*x-5, x);

Cryptography Notes: Technology Guides 70



CHAPTER 2. INTRODUCTION TO MAXIMA

(%o2) [x =
5

3
, x = −1]

(%i3) solve(3*xˆ2-2*x-5);

(%o3) [x =
5

3
, x = −1]

Maxima can also do some modular solving of equations, the solve command will solve
linear and systems of linear equations over a modulus. For extracting square and cube roots
there is another way to do this which we will talk about in the next section. To tell Maxima
that we wish to work modulo a number n we reset the modulus variable. The default value
of the modulus variable is false, which means that Maxima is not working over a modulus,
it is working over the real and complex numbers systems. If we set this to a positive integer
then Maxima shifts into modular calculation mode. So on input line number 2, we shift
Maxima into working modulo 23. You can also invoke the modulus change with the solve
command at the same time so that the value of modulus is not changed globally, to do this
simply follow the solve command with the modulus command on the same line separated
with a comma, as we did on input number 7.

(%i1) modulus;

(%o1) false

(%i2) modulus:23;

(%o2) 23

(%i3) solve(7*x=3);

(%o3) [x = 7]

(%i4) modulus;

(%o4) 23

(%i5) modulus:false;

(%o5) false

(%i6) solve(7*x=3);

(%o6) [x =
3

7
]

(%i7) solve(7*x=3),modulus:23;

(%o7) [x = 7]

(%i8) modulus;

(%o8) false

Cryptography Notes: Technology Guides 71



CHAPTER 2. INTRODUCTION TO MAXIMA

2.5.13 Modular Square Roots and Cube Roots

Unfortunately, the solver in modular arithmetic mode is not powerful enough to solve non-
linear equations. Fortunately, in cryptography, there are not too many times that we want to
solve a general non-linear modular equation, although there are times when we want to find a
square root of a number modulo another number, if it exists. Maxima has several commands
to do this, each use a slightly different algorithm. These are contained in the gf package
that must be loaded before using them. The gf package is a special package of routines that
allow the user to do finite field computations in Maxima. To load in the gf package, use the
command load(gf)$, the $ simply suppresses output, which is not needed here. There are
three square root functions, msqrt(a, p), ssqrt(a, p), and gf_sqrt(a, p). For
each, the value a is the one being rooted and p is the prime modulus. If a is not a quadratic
residue modulo p you will get an error. The last command will probably not be used too
much in these notes but it will find a modular cube root.

(%i1) load(gf)$

(%i2) msqrt(5, 29);

(%o2) [18, 11]

(%i3) mod(18ˆ2,29);

(%o3) 5

(%i4) ssqrt(5, 29);

(%o4) [18, 11]

(%i5) gf_sqrt(5, 29);

(%o5) [11, 18]

(%i6) msqrt(8, 17);

(%o6) [5, 12]

(%i7) msqrt(7, 17);

ERROR: First argument must be a quadratic residue.
#0: msqrt(a=7,p=17)(gf.mac line 483)
– an error. To debug this try: debugmode(true);

(%i8) mcbrt(5, 29);

(%o8) 22

(%i9) mod(22ˆ3,29);

(%o9) 5

Cryptography Notes: Technology Guides 72



CHAPTER 2. INTRODUCTION TO MAXIMA

2.5.14 Factoring

Factoring is essential for many cyptographic processes and cryptanalysis. In fact, finding
faster factoring algorithms is one of the central goals in cryptography. Maxima has two
factoring commands for integers, factor and ifactors. The factor command simply
calls the ifactors command and displays the result in a slightly different form. So there
is no difference in the runtime or algorithms used. To use these, simply input factor(n)
or ifactors(n), where n is the number to be factored. Factorization methods used are
trial divisions by primes up to 9973, Pollard’s rho and p− 1 methods, and elliptic curves.

(%i1) factor(56584537362323645765968670670767558484);

(%o1) 22 · 32 · 197 · 9011199181297 · 885414139624867842841

(%i2) ifactors(56584537362323645765968670670767558484);

(%o2) [[2, 2], [3, 2], [197, 1], [9011199181297, 1], [885414139624867842841, 1]]

As you can see from the output above, the ifactors command returns a list of factor
lists, in each factor list the first entry is the factor and the second is the multiplicity of the
factor. The factor command simply reorganizes the output into a more mathematical
format.

2.5.15 Factoring Polynomials

In Maxima, the command to factor a polynomial is factor. In the first example below,
the input and output is the factorization of x6 + x5 + x3 + 1 using integer coefficients, that
is, the coefficients are integers and the coefficients of the factorization are also integers.

To factor a polynomial modulo a prime in Maxima, simply set the modulus option to the
desired prime, as we did with the second input. Now when the factor command is invoked
the factorization will be modulo the prime. In the second and third inputs, we change the
modulus to 2 and then factor x6 + x5 + x3 + 1, the result is a factorization modulo 2.

(%i1) factor(xˆ6 + xˆ5 + xˆ3 + 1);

(%o1) (x+ 1) ·
(
x2 + 1

)
·
(
x3 − x+ 1

)
(%i2) modulus:2;

(%o2) 2

(%i3) factor(xˆ6 + xˆ5 + xˆ3 + 1);

(%o3) (x+ 1)3 ·
(
x3 + x+ 1

)
To go back to non-modulus calculations simply set the modulus option to false.

Cryptography Notes: Technology Guides 73



CHAPTER 2. INTRODUCTION TO MAXIMA

2.5.16 Euler Totient Function

The Euler totient function, also known as the Euler phi function, φ(n) is the number of
integers less than or equal to n which are relatively prime to n. In Maxima this command
is simply, totient(n).

(%i1) totient(24);

(%o1) 8

(%i2) totient(75);

(%o2) 40

(%i3) totient(56584537362323645765968670670767558484);

(%o3) 18765768736064642666886637160664545280

Note that the calculation of the totient function requires the factorization of n, hence the
calculation time of the totient of a large number could be lengthy.

2.5.17 Primitive Roots

A primitive root modulo n is a number whose powers modulo n generate all numbers less
than n that are relatively prime to n. In more mathematical lingo, a primitive root modulo
n is a number whose powers modulo n generate all numbers in (Z/nZ)∗. If the multiplicative
group (Z/nZ)∗ is cyclic, zn_primroot(n) computes the smallest primitive root modulo
n. (Z/nZ)∗ is cyclic if n is equal to 2, 4, pk or 2pk, where p is prime and greater than 2 and
k is a natural number. Most of the time, for us, n will be a prime number.

(%i1) zn_primroot(139);

(%o1) 2

(%i2) zn_primroot(7);

(%o2) 3

(%i3) for a:1 thru 6 do display(mod(3ˆa, 7))$

mod (3, 7) = 3
mod (9, 7) = 2
mod (27, 7) = 6
mod (81, 7) = 4
mod (243, 7) = 5
mod (729, 7) = 1

(%i4) zn_primroot(9);

(%o4) 2

Cryptography Notes: Technology Guides 74



CHAPTER 2. INTRODUCTION TO MAXIMA

(%i5) for a:1 thru 8 do display(mod(2ˆa, 9))$

mod (2, 9) = 2
mod (4, 9) = 4
mod (8, 9) = 8
mod (16, 9) = 7
mod (32, 9) = 5
mod (64, 9) = 1
mod (128, 9) = 2
mod (256, 9) = 4

Maxima also has a function that will determine if a number is a primitive root modulo
another number. The command zn_primroot_p(a, n) will return true if a is a prim-
itive root modulo n and false otherwise. As with the zn_primroot(n) command, the
multiplicative group (Z/nZ)∗ must be cyclic.

(%i1) zn_primroot_p(3, 7);

(%o1) true

(%i2) zn_primroot_p(2, 7);

(%o2) false

(%i3) zn_primroot_p(2, 139);

(%o3) true

(%i4) zn_primroot_p(13, 139);

(%o4) false

(%i5) zn_primroot_p(132, 139);

(%o5) true

These commands rely on the factorization of the totient function of n, hence for large n
the calculation could be lengthy.

2.5.18 Discrete Logarithms

Given three numbers, g, a, and n the solution x to the congruence gx ≡ a (mod n) is called
the discrete logarithm of a, base g modulo n, if x exists.

If (Z/nZ)∗ is a cyclic group (n is equal to 2, 4, pk or 2pk, where p is prime and greater than
2 and k is a natural number), g a primitive root modulo n and let a be a member of this group.
Then zn_log(a, g, n) then solves the congruence gx ≡ a (mod n). The algorithm uses
a Pohlig-Hellman-reduction and Pollard’s Rho-method for discrete logarithms.

Cryptography Notes: Technology Guides 75



CHAPTER 2. INTRODUCTION TO MAXIMA

(%i1) zn_primroot(7);

(%o1) 3

(%i2) zn_log(6, 3, 7);

(%o2) 3

(%i3) mod(3ˆ3, 7);

(%o3) 6

(%i4) zn_primroot_p(132, 139);

(%o4) true

(%i5) zn_log(23, 132, 139);

(%o5) 93

(%i6) power_mod(132, 93, 139);

(%o6) 23

2.5.19 Order of an Element

The order of an element a modulo n is the smallest positive power of a modulo n that results
in 1. More specifically, a must be a unit in the multiplicative group (Z/nZ)∗. In Maxima,
the command for this computation is zn_order(a, n). The same restrictions on n hold
here as with the primitive root calculations and the algorithm relies on the factorization of
the totient of n, so the calculation could be lengthy if n is large.

(%i1) zn_order(4, 17);

(%o1) 4

(%i2) mod(4ˆ1, 17);

(%o2) 4

(%i3) mod(4ˆ2, 17);

(%o3) 16

(%i4) mod(4ˆ3, 17);

(%o4) 13

(%i5) mod(4ˆ4, 17);

Cryptography Notes: Technology Guides 76



CHAPTER 2. INTRODUCTION TO MAXIMA

(%o5) 1

2.6 Vectors and Matrices

We will start out with some basic operations on matrices and vectors in general and then
we will discuss some ways of doing matrix operations over a modulus.

In Maxima, vectors are simply matrices with either a single row or a single column. Most
of these functions will work if the vectors are represented as row vectors or column vectors,
and some will work if the vectors are simply defined as a list.

Although this is not always necessary, it is a good idea to load the “eigen” package
anytime you want to do work with matrices. The “eigen” package has many matrix manip-
ulation functions built-in, more then just eigenvalues and eigenvectors as its name implies.
Recall that to load a package we simply use the load command load("eigen").

2.6.1 Defining a Matrix

To define a matrix or a vector we use a special matrix command,

matrix(row1, row2, ..., rown)

will define a matrix with n rows, each of the rows in the command must be lists. In the
examples below, input 2 defines a 3 × 3 matrix, input 3 defines a 3-dimensional row vector
and input 5 defines a 3-dimensional column vector. Note that input 4 defines a list with three
entries, although this looks similar to the row vector A they are different. The wxMaxima
interface has menu options for creating a matrix that allow the user to input entries into a
dialog box in place of writing a command.

With some operations the list and row vector will work interchangeably and with other
operations they will not. Since the syntax for creating a column vector is a bit cumbersome,
there is another way to create one. The covect(L) or columnvector(L) commands
will turn the list L into a column vector. One final way to create a column vector is to
transpose a row vector or a list. The transpose(M) command will return the transpose of
a matrix M , that is, change all of the rows of M into columns. So transposing a row vector
will produce a column vector. The transpose(M) command will also work on a list, so in
input number 8 we could still get a column vector with the command transpose(B).

(%i1) load("eigen")$

(%i2) M:matrix([1,2,3],[4,5,6],[7,8,9]);

(%o2)

1 2 3
4 5 6
7 8 9


(%i3) A:matrix([3,6,9]);

(%o3)
[
3 6 9

]
Cryptography Notes: Technology Guides 77



CHAPTER 2. INTRODUCTION TO MAXIMA

(%i4) B:[3,6,9];

(%o4) [3, 6, 9]

(%i5) C:matrix([1],[5],[7]);

(%o5)

1
5
7


(%i6) D:covect([1,5,7]);

(%o6)

1
5
7


(%i7) H:columnvector([4,5,10]);

(%o7)

 4
5
10


(%i8) J:transpose(A);

(%o8)

3
6
9


Another nifty thing you can do with matrices is to extract rows, columns and entries

relatively easily. You can also join matrices together, add rows and columns to a matrix,
and change entries

Once a matrix, say M is defined, you can extract the (i, j) entry using either M[i,j]
or M[i][j]. You can extract a row by either M[i] or row(M,i) where i is the row to
extract. Note that these operations do not alter the original matrix. You can also extract
the ith column with col(M,i). Adding rows and columns to a matrix can be done with
the addrow and the addcol commands. They both have the form,

addrow(M1, M2, M3, ..., Mn)

where M1, M2, M3, . . . , Mn are either matrices or lists.

(%i1) M:matrix([1,2,3],[4,5,6],[7,8,9]);

(%o1)

1 2 3
4 5 6
7 8 9


(%i2) M[2,3];

(%o2) 6

Cryptography Notes: Technology Guides 78



CHAPTER 2. INTRODUCTION TO MAXIMA

(%i3) M[1];

(%o3) [1, 2, 3]

(%i4) M[3];

(%o4) [7, 8, 9]

(%i5) row(M,2);

(%o5)
[
4 5 6

]
(%i6) col(M,1);

(%o6)

1
4
7


(%i7) addcol(M,[10, 11, 12]);

(%o7)

1 2 3 10
4 5 6 11
7 8 9 12


(%i8) addcol(M,[10, 11, 12],[15, 16, 17]);

(%o8)

1 2 3 10 15
4 5 6 11 16
7 8 9 12 17


(%i9) addrow(M,[10, 11, 12]);

(%o9)


1 2 3
4 5 6
7 8 9
10 11 12


(%i10)addrow(M,[10, 11, 12],[15, 16, 17]);

(%o10)


1 2 3
4 5 6
7 8 9
10 11 12
15 16 17


(%i11)A:matrix([a,b,c],[d,e,f],[g,h,i]);

(%o11)

a b c
d e f
g h i


(%i12)addcol(M,A);

Cryptography Notes: Technology Guides 79



CHAPTER 2. INTRODUCTION TO MAXIMA

(%o12)

1 2 3 a b c
4 5 6 d e f
7 8 9 g h i


(%i13)addrow(M,A);

(%o13)


1 2 3
4 5 6
7 8 9
a b c
d e f
g h i


Submatrix construction along with replacing rows, columns and entries is quick as well.

You can replace a row using the notation M[i]:[a, b, ..., n] where i is the row to
change and the list of elements has the same number of columns as M . There does not
seem to be a column replacement command but one can do that by transposing the matrix,
replacing the desired row and then transposing again.

Maxima has a built-in function to construct the (i, j)-Minor of a matrix, minor(M,i,j).
Maxima also has an interesting function for the construction of a submatrix. The command

submatrix(r1, r2, ..., rm, M, c1, c2, ..., cn)

Will take the matrix M and remove rows r1, . . . , rm and columns c1, . . . , cn.

(%i1) M:matrix([1,2,3],[4,5,6],[7,8,9]);

(%o1)

1 2 3
4 5 6
7 8 9


(%i2) M;

(%o2)

1 2 3
4 5 6
7 8 9


(%i3) M[2]:[7,7,7];

(%o3) [7, 7, 7]

(%i4) M;

(%o4)

1 2 3
7 7 7
7 8 9


(%i5) minor(M,1,2);

(%o5)

[
7 7
7 9

]
Cryptography Notes: Technology Guides 80



CHAPTER 2. INTRODUCTION TO MAXIMA

(%i6) submatrix(1, M, 2);

(%o6)

[
7 7
7 9

]
(%i7) submatrix(1, 3, M, 2);

(%o7)
[
7 7

]
(%i8) M;

(%o8)

1 2 3
7 7 7
7 8 9


(%i9) col(M,3);

(%o9)

3
7
9


(%i10)M:transpose(M);

(%o10)

1 7 7
2 7 8
3 7 9


(%i11)M[1]:[5,4,3];

(%o11) [5, 4, 3]

(%i12)M:transpose(M);

(%o12)

5 2 3
4 7 7
3 8 9


(%i13)M;

(%o13)

5 2 3
4 7 7
3 8 9


One thing about matrices that is different from numeric values is the way that assignments

work. If you are familiar with the way arrays are stored in a programming language line
Java or C++ this will come as no surprise but if you are not familiar with this please look
at the next examples carefully.

(%i1) M:matrix([1,2,3],[4,5,6],[7,8,9]);

Cryptography Notes: Technology Guides 81



CHAPTER 2. INTRODUCTION TO MAXIMA

(%o1)

1 2 3
4 5 6
7 8 9


(%i2) M;

(%o2)

1 2 3
4 5 6
7 8 9


(%i3) A:M;

(%o3)

1 2 3
4 5 6
7 8 9


(%i4) A;

(%o4)

1 2 3
4 5 6
7 8 9


(%i5) A[2,2]:x;

(%o5) x

(%i6) A;

(%o6)

1 2 3
4 x 6
7 8 9


(%i7) M;

(%o7)

1 2 3
4 x 6
7 8 9


(%i8) M[2,2]:5;

(%o8) 5

(%i9) A;

(%o9)

1 2 3
4 5 6
7 8 9


(%i10)M:matrix([1,2,3],[4,5,6],[7,8,9]);

(%o10)

1 2 3
4 5 6
7 8 9


(%i11)M;

Cryptography Notes: Technology Guides 82



CHAPTER 2. INTRODUCTION TO MAXIMA

(%o11)

1 2 3
4 5 6
7 8 9


(%i12)A;

(%o12)

1 2 3
4 5 6
7 8 9


(%i13)B:copymatrix(M);

(%o13)

1 2 3
4 5 6
7 8 9


(%i14)B;

(%o14)

1 2 3
4 5 6
7 8 9


(%i15)M;

(%o15)

1 2 3
4 5 6
7 8 9


(%i16)B[2,2]:t;

(%o16) t

(%i17)B;

(%o17)

1 2 3
4 t 6
7 8 9


(%i18)M;

(%o18)

1 2 3
4 5 6
7 8 9


To summarize what happened above, we assigned A the matrix M using A:M. What

happened is that the variables A and M both referenced the same matrix, in other words,
A was not a new matrix with the same entries as M , as we might have expected. So when
we changed an entry in A it was also changed in M , since there is really only one matrix
in memory. To make Maxima create a new matrix we use the copymatrix command. So
B:copymatrix(M) creates a new matrix with the same entries as M . So when we change
B, M is not altered.

Cryptography Notes: Technology Guides 83



CHAPTER 2. INTRODUCTION TO MAXIMA

2.6.2 Matrix Arithmetic

Matrix addition and subtraction are done with the usual + and − operators. If the matrices
are the same size then the operation returns the resulting matrix, if the matrices are not
the same size then Maxima displays an error. Matrix multiplication is not done with the

* symbol, M*A will return an entry by entry product, which is not the standard matrix
multiplication. The same is true for the / symbol, M/A will return an entry by entry
quotient. There may be times you want to use these types of operations but we are more
interested in the standard matrix multiplication. Matrix multiplication is done with the .
symbol, M.A will return the matrix product as long as the matrices are of compatible size,
if not, you will get an error.

Matrix powers are not done by ˆ but rather ˆˆ. If A is a square matrix then Aˆˆ3 will
return A3. Using only the single power symbol will return a matrix with each entry raised
to the power, again, this might be something you want to do but not for taking a matrix
power. If A is not a square matrix, you will get an error when taking a power.

Finding the inverse of a matrix can be done with Aˆˆ-1 or with the invert(A) com-
mand. If A is not square or if the matrix is not invertible you will get an error. You can find
the determinant of a square matrix using the determinant(A) command.

(%i1) M:matrix([1,2,3],[4,5,6],[7,8,9]);

(%o1)

1 2 3
4 5 6
7 8 9


(%i2) A:matrix([1,0,1],[2,1,5],[3,2,0]);

(%o2)

1 0 1
2 1 5
3 2 0


(%i3) B:matrix([-1,3,2],[-2,0,4]);

(%o3)

[
−1 3 2
−2 0 4

]
(%i4) C:matrix([-1,3],[-2,0],[1,1]);

(%o4)

−1 3
−2 0
1 1


(%i5) A+M;

(%o5)

 2 2 4
6 6 11
10 10 9


(%i6) A-M;

Cryptography Notes: Technology Guides 84



CHAPTER 2. INTRODUCTION TO MAXIMA

(%o6)

 0 −2 −2
−2 −4 −1
−4 −6 −9


(%i7) A+B;

fullmap: arguments must have same formal structure.
– an error. To debug this try: debugmode(true);

(%i8) B-transpose(C);

(%o8)

[
0 5 1
−5 0 3

]
(%i9) A.M;

(%o9)

 8 10 12
41 49 57
11 16 21


(%i10)B.C;

(%o10)

[
−3 −1
6 −2

]
(%i11)C.B;

(%o11)

−5 −3 10
2 −6 −4
−3 3 6


(%i12)M.B;

MULTIPLYMATRICES: attempt to multiply nonconformable matrices.
– an error. To debug this try: debugmode(true);

(%i13)Aˆˆ3;

(%o13)

11 4 14
62 25 74
50 28 17


(%i14)invert(M);

expt: undefined: 0 to a negative exponent.
– an error. To debug this try: debugmode(true);

(%i15)invert(A);

(%o15)

 10
9
−2

9
1
9

−5
3

1
3

1
3

−1
9

2
9
−1

9



Cryptography Notes: Technology Guides 85



CHAPTER 2. INTRODUCTION TO MAXIMA

(%i16)determinant(A);

(%o16) − 9

(%i17)determinant(M);

(%o17) 0

(%i18)Aˆ3;

(%o18)

 1 0 1
8 1 125
27 8 0


(%i19)A*M;

(%o19)

 1 0 3
8 5 30
21 16 0


(%i20)A/M;

(%o20)

1 0 1
3

1
2

1
5

5
6

3
7

1
4

0


2.6.3 Matrix Reduction

There are two commands for reducing matrices in Maxima, they are the echelon(M) and
triangularize(M) commands. The echelon command returns the echelon form of the
matrix M , as produced by Gaussian elimination. The echelon form is computed from M by
elementary row operations such that the first non-zero element in each row in the resulting
matrix is one and the column elements under the first one in each row are all zero. The
triangularize command also carries out Gaussian elimination, but it does not normalize the
leading non-zero element in each row.

(%i1) M:matrix([1,2,3],[4,5,6],[7,8,9]);

(%o1)

1 2 3
4 5 6
7 8 9


(%i2) A:matrix([1,0,1],[2,1,5],[3,2,0]);

(%o2)

1 0 1
2 1 5
3 2 0


(%i3) B:matrix([-1,3,2],[-2,0,4]);

Cryptography Notes: Technology Guides 86



CHAPTER 2. INTRODUCTION TO MAXIMA

(%o3)

[
−1 3 2
−2 0 4

]
(%i4) C:matrix([-1,3],[-2,0],[1,1]);

(%o4)

−1 3
−2 0
1 1


(%i5) echelon(M);

(%o5)

1 2 3
0 1 2
0 0 0


(%i6) echelon(A);

(%o6)

1 0 1
0 1 3
0 0 1


(%i7) echelon(B);

(%o7)

[
1 0 −2
0 1 0

]
(%i8) echelon(C);

(%o8)

1 0
0 1
0 0


(%i9) triangularize(M);

(%o9)

1 2 3
0 −3 −6
0 0 0


(%i10)triangularize(A);

(%o10)

1 0 1
0 1 3
0 0 −9


(%i11)triangularize(B);

(%o11)

[
−2 0 4
0 −6 0

]
(%i12)triangularize(C);

(%o12)

−2 0
0 −6
0 0



Cryptography Notes: Technology Guides 87



CHAPTER 2. INTRODUCTION TO MAXIMA

Unfortunately, Maxima does not have a built-in function for finding the reduced row
echelon form of a matrix, but it is easy to create one. The reduced row echelon form of a
matrix has the same properties as the echelon form except that the leading one in each row
is the only nonzero element in its column. The following script for the rref command will
find the reduced row echelon form of the input matrix.

rref(a):=block([r,c,pc,pcf],[r,c]:matrix_size(a),a:echelon(a),
for i:r thru 2 step -1 do (
pc:0,pcf:false,
for j:1 thru c do (
if (a[i,j]=1 and pcf=false) then (pc:j,pcf:true)),
if pcf then (for j:1 thru i-1 do (a:rowop(a,j,i,a[j,pc])))),
a)$

(%i1) rref(a):=block([r,c,pc,pcf],[r,c]:matrix_size(a),a:echelon(a),
for i:r thru 2 step -1 do (
pc:0,pcf:false,
for j:1 thru c do (
if (a[i,j]=1 and pcf=false) then (pc:j,pcf:true)),
if pcf then (for j:1 thru i-1 do (a:rowop(a,j,i,a[j,pc])))),
a)$

(%i2) A:matrix([1,2,3,4,5],[4,5,6,7,8],[7,8,9,11,12]);

(%o2)

1 2 3 4 5
4 5 6 7 8
7 8 9 11 12


(%i3) rref(A);

(%o3)

1 0 −1 0 −1
0 1 2 0 1
0 0 0 1 1


2.6.4 Modular Matrix Operations

When doing modular arithmetic on matrices or matrix reduction in Maxima, it takes a
couple different techniques, most of which we have seen. You simply need to be careful
which technique you use for which operation.

When doing modular matrix arithmetic, that is, addition, subtraction, multiplication,
and positive powers, simply put the operation inside a mod command. Inverse and negative
powers require a different method which we will discuss below. One word of caution, the
power_mod function does not work on matrices, so to take a modular matrix power, you
first take the matrix power and then the modulus. So the matrix powers should not be too
large.

(%i1) M:matrix([1,2,3],[4,5,6],[7,8,9]);

Cryptography Notes: Technology Guides 88



CHAPTER 2. INTRODUCTION TO MAXIMA

(%o1)

1 2 3
4 5 6
7 8 9


(%i2) A:matrix([1,0,1],[2,1,5],[3,2,0]);

(%o2)

1 0 1
2 1 5
3 2 0


(%i3) mod(A+M, 7);

(%o3)

2 2 4
6 6 4
3 3 2


(%i4) mod(A.M, 7);

(%o4)

1 3 5
6 0 1
4 2 0


(%i5) mod(Aˆˆ15, 7);

(%o5)

2 4 3
5 2 5
3 6 5


Modular matrix inverses are a little more tricky, we will discuss the technique and then

give you a function definition that will do all the steps in a single function.
When studying the determinant in your linear algebra class you may have come across

the formula,

A−1 =
1

det(A)
adj(A)

where adj(A) is the adjugate (or classical adjoint) of the matrix. The adjugate of A is the
transpose of the cofactor matrix. This can be done modulo n as well. Cofactors are just
determinants and determinants are just multiplications and additions, hence we simply do
all of our operations modulo n. Taking all of these determinants is very computationally
expensive but for moderate sized matrices this is a viable solution.

So if we want to invert the matrix M modulo n, we do the following,

1. Mod the matrix M by the modulus n.

2. Find the determinant of M , and mod it by n.

3. Take the GCD of the determinant and n. If the GCD is not 1 then we know that the
determinant is not invertible modulo n and the process stops, since the matrix M will
not be invertible modulo n. On the other hand, if the GCD is 1 we continue.

4. Find the inverse of the determinant modulo n.

Cryptography Notes: Technology Guides 89



CHAPTER 2. INTRODUCTION TO MAXIMA

5. Find the adjugate (or classical adjoint) of the matrix.

6. Find the product of the determinant inverse and the adjugate.

7. Finally, take the matrix from the last step modulo n.

For example,

(%i1) M:matrix([1,2,3],[4,5,6],[1,5,1]);

(%o1)

1 2 3
4 5 6
1 5 1


(%i2) M:mod(M, 7);

(%o2)

1 2 3
4 5 6
1 5 1


(%i3) determinant(M);

(%o3) 24

(%i4) gcd(24, 7);

(%o4) 1

(%i5) inv_mod(24, 7);

(%o5) 5

(%i6) IM:5*adjoint(M);

(%o6)

−125 65 −15
10 −10 30
75 −15 −15


(%i7) InvM:mod(IM, 7);

(%o7)

1 2 6
3 4 2
5 6 6


(%i8) mod(M.InvM, 7);

(%o8)

1 0 0
0 1 0
0 0 1


The above technique is not difficult but it could be lengthy if you had several matrices

to invert. The following is a function definition for a function that will do all of these steps.

mat_mod_inverse(M, n):=block(
[TEMPMAT, DET, GCD, INVDET, MADJ, MADJINVDET],

Cryptography Notes: Technology Guides 90



CHAPTER 2. INTRODUCTION TO MAXIMA

TEMPMAT:mod(M, n),
DET:mod(determinant(TEMPMAT), n),
GCD:gcd(DET, n),
if GCD # 1 then return (false),
INVDET:inv_mod(DET, n),
MADJ:adjoint(TEMPMAT),
MADJINVDET:INVDET*MADJ,
mod(MADJINVDET, n)

)$

We will not discuss creating function blocks in Maxima, the interested reader can find
many references online for programming in Maxima. The function itself is not hard to
read, and it is easy to see the steps being done. The syntax for the function is simple,
mat_mod_inverse(M,n) will invert M modulo n, if the inverse exists. If the inverse does
not exist then the function will return false.

(%i1) M:matrix([1,2,3],[4,5,6],[1,5,1]);

(%o1)

1 2 3
4 5 6
1 5 1


(%i2) mat_mod_inverse(M, n):=block(

[TEMPMAT, DET, GCD, INVDET, MADJ, MADJINVDET],
TEMPMAT:mod(M, n),
DET:mod(determinant(TEMPMAT), n),
GCD:gcd(DET, n),
if GCD # 1 then return (false),
INVDET:inv_mod(DET, n),
MADJ:adjoint(TEMPMAT),
MADJINVDET:INVDET*MADJ,
mod(MADJINVDET, n)
)$

(%i3) mat_mod_inverse(M,7);

(%o3)

1 2 6
3 4 2
5 6 6


Modular matrix reduction can be done by using the modulus variable, for prime moduli.

Simply set the modulus variable to the desired modulus before invoking the echelon or
triangularize commands. Note that when the modulus is not false, the matrix entries are in
“balanced” modular format, that is between −n

2
and n

2
. If you want the values to be between

0 and n− 1, simply apply the mod command to the result.

(%i1) A:matrix([1,2,3],[4,5,6],[1,0,1]);

(%o1)

1 2 3
4 5 6
1 0 1


Cryptography Notes: Technology Guides 91



CHAPTER 2. INTRODUCTION TO MAXIMA

(%i2) modulus:false;

(%o2) false

(%i3) triangularize(A);

(%o3)

1 0 1
0 5 2
0 0 6


(%i4) echelon(A);

(%o4)

1 0 1
0 1 2

5

0 0 1


(%i5) modulus:5;

(%o5) 5

(%i6) triangularize(A);

(%o6)

−1 0 1
0 −2 1
0 0 1


(%i7) echelon(A);

(%o7)

1 0 −1
0 1 2
0 0 1


(%i8) determinant(A);

(%o8) − 6

(%i9) modulus:2;

(%o9) 2

(%i10)triangularize(A);

(%o10)

1 0 1
0 1 0
0 0 0


(%i11)echelon(A);

(%o11)

1 0 1
0 1 0
0 0 0


(%i12)modulus:3;

Cryptography Notes: Technology Guides 92



CHAPTER 2. INTRODUCTION TO MAXIMA

(%o12) 3

(%i13)triangularize(A);

(%o13)

1 −1 0
0 1 1
0 0 0


(%i14)echelon(A);

(%o14)

1 −1 0
0 1 1
0 0 0


(%i15)mod(echelon(A),modulus);

(%o15)

1 2 0
0 1 1
0 0 0


If your modulus is not prime then you could have a problem. The echelon command may

try to invert an element modulo a non-prime number that does not have an inverse, in which
case you will get an error. For example,

(%i1) A:matrix([1,2,3],[4,5,6],[7,8,9]);

(%o1)

1 2 3
4 5 6
7 8 9


(%i2) modulus:6;

warning: assigning 6, a non-prime, to ’modulus’
(%o2) 6

(%i3) echelon(A);

CRECIP: attempted inverse of zero (mod 2)
– an error. To debug this try: debugmode(true);

To take care of the case where we have a composite modulus we can simply write a
script that does Gaussian elimination and checks for invertibility modulo n in the reduction
process. This script will also work for prime moduli and we will not need to change the
modulus variable in Maxima. One note, when using a composite modulus, a matrix may not
have an echelon or reduced row echelon form. These scripts will attempt to put a matrix
in echelon and reduced echelon form but in the case where the forms are not possible the
script will reduce the matrix to be close to echelon or reduced echelon form. We produce
two scripts here, the first mod_echelon(a,n) takes a matrix a and a modulus n and
reduces the matrix to echelon form modulo n, if it can. The second, mod_rref(a,n) takes
a matrix a and a modulus n and reduces the matrix to reduced row echelon form modulo n,

Cryptography Notes: Technology Guides 93



CHAPTER 2. INTRODUCTION TO MAXIMA

if it can.

mod_echelon(a,n):=block([r,c,k,pc,rn,cn,m,pcf,zpos1,zpos2,cm],
[r,c]:matrix_size(a),a:mod(a,n),
pc:1,
for i:1 thru r do (
if (pc > c) then return(),
pcf:false,
for j:i thru r do (
k:a[j,pc],
if (k#0 and gcd(k,n)=1) then (a:rowswap(a,i,j),pcf:true,return())),
if pcf then (
ik:inv_mod(k,n),
for cn:1 thru c do (a[i,cn]:mod(ik*a[i,cn],n)),
for rn:i+1 thru r do (
m:a[rn,pc],
for cn:1 thru c do (a[rn,cn]:mod(-a[i,cn]*m+a[rn,cn],n)))),
pc:pc+1),
for j:1 thru r-1 do (
cm:false,
for i:1 thru r-1 do (
zpos1:c+1,zpos2:c+1,
for cn:1 thru c do (if (a[i,cn]#0 and zpos1=c+1) then (zpos1:cn)),
for cn:1 thru c do (if (a[i+1,cn]#0 and zpos2=c+1) then (zpos2:cn)),
if zpos1 > zpos2 then (a:rowswap(a,i,i+1),cm:true)),
if not cm then return()),
a)$

mod_rref(a,n):=block([r,c,k,pc,rn,cn,m,pcf,npc,zpos1,zpos2,cm],
[r,c]:matrix_size(a),a:mod(a,n),
pc:1,
for i:1 thru r do (
if (pc > c) then return(),
pcf:false,
for j:i thru r do (
k:a[j,pc],
if (k#0 and gcd(k,n)=1) then (a:rowswap(a,i,j),pcf:true,return())),
if pcf then (
ik:inv_mod(k,n),
for cn:1 thru c do (a[i,cn]:mod(ik*a[i,cn],n)),
for rn:i+1 thru r do (
m:a[rn,pc],
for cn:1 thru c do (a[rn,cn]:mod(-a[i,cn]*m+a[rn,cn],n)))),
pc:pc+1),
for i:r thru 2 step -1 do (
pcf:false,npc:false,
for j:1 thru c do (
k:a[i,j],
if (k#0) then (if (k=1) then (pc:j,pcf:true) else npc:true),
if (pcf or npc) then return()),
if pcf then (
for rn:i-1 thru 1 step -1 do (
m:a[rn,pc],
for cn:1 thru c do (a[rn,cn]:mod(-a[i,cn]*m+a[rn,cn],n))))),
for j:1 thru r-1 do (
cm:false,
for i:1 thru r-1 do (
zpos1:c+1,zpos2:c+1,
for cn:1 thru c do (if (a[i,cn]#0 and zpos1=c+1) then (zpos1:cn)),
for cn:1 thru c do (if (a[i+1,cn]#0 and zpos2=c+1) then (zpos2:cn)),
if zpos1 > zpos2 then (a:rowswap(a,i,i+1),cm:true)),
if not cm then return()),
a)$

For example,

Cryptography Notes: Technology Guides 94



CHAPTER 2. INTRODUCTION TO MAXIMA

(%i1) mod_echelon(a,n):=block([r,c,k,pc,rn,cn,m,pcf,zpos1,zpos2,cm],
[r,c]:matrix_size(a),a:mod(a,n),
pc:1,
for i:1 thru r do (
if (pc > c) then return(),
pcf:false,
for j:i thru r do (
k:a[j,pc],
if (k#0 and gcd(k,n)=1) then (a:rowswap(a,i,j),pcf:true,return())),
if pcf then (
ik:inv_mod(k,n),
for cn:1 thru c do (a[i,cn]:mod(ik*a[i,cn],n)),
for rn:i+1 thru r do (
m:a[rn,pc],
for cn:1 thru c do (a[rn,cn]:mod(-a[i,cn]*m+a[rn,cn],n)))),
pc:pc+1),
for j:1 thru r-1 do (
cm:false,
for i:1 thru r-1 do (
zpos1:c+1,zpos2:c+1,
for cn:1 thru c do (if (a[i,cn]#0 and zpos1=c+1) then (zpos1:cn)),
for cn:1 thru c do (if (a[i+1,cn]#0 and zpos2=c+1) then (zpos2:cn)),
if zpos1 > zpos2 then (a:rowswap(a,i,i+1),cm:true)),
if not cm then return()),
a)$

Cryptography Notes: Technology Guides 95



CHAPTER 2. INTRODUCTION TO MAXIMA

(%i2) mod_rref(a,n):=block([r,c,k,pc,rn,cn,m,pcf,npc,zpos1,zpos2,cm],
[r,c]:matrix_size(a),a:mod(a,n),
pc:1,
for i:1 thru r do (
if (pc > c) then return(),
pcf:false,
for j:i thru r do (
k:a[j,pc],
if (k#0 and gcd(k,n)=1) then (a:rowswap(a,i,j),pcf:true,return())),
if pcf then (
ik:inv_mod(k,n),
for cn:1 thru c do (a[i,cn]:mod(ik*a[i,cn],n)),
for rn:i+1 thru r do (
m:a[rn,pc],
for cn:1 thru c do (a[rn,cn]:mod(-a[i,cn]*m+a[rn,cn],n)))),
pc:pc+1),
for i:r thru 2 step -1 do (
pcf:false,npc:false,
for j:1 thru c do (
k:a[i,j],
if (k#0) then (if (k=1) then (pc:j,pcf:true) else npc:true),
if (pcf or npc) then return()),
if pcf then (
for rn:i-1 thru 1 step -1 do (
m:a[rn,pc],
for cn:1 thru c do (a[rn,cn]:mod(-a[i,cn]*m+a[rn,cn],n))))),
for j:1 thru r-1 do (
cm:false,
for i:1 thru r-1 do (
zpos1:c+1,zpos2:c+1,
for cn:1 thru c do (if (a[i,cn]#0 and zpos1=c+1) then (zpos1:cn)),
for cn:1 thru c do (if (a[i+1,cn]#0 and zpos2=c+1) then (zpos2:cn)),
if zpos1 > zpos2 then (a:rowswap(a,i,i+1),cm:true)),
if not cm then return()),
a)$

(%i3) A:matrix([1,2,3,4,5],[4,5,6,7,8],[7,8,9,11,12]);

(%o3)

1 2 3 4 5
4 5 6 7 8
7 8 9 11 12


(%i4) mod_echelon(A,26);

Cryptography Notes: Technology Guides 96



CHAPTER 2. INTRODUCTION TO MAXIMA

(%o4)

1 2 3 4 5
0 1 2 3 4
0 0 0 1 1


(%i5) mod_rref(A,26);

(%o5)

1 0 25 0 25
0 1 2 0 1
0 0 0 1 1


(%i6) B:matrix([12,25,10,18,7],[0,15,24,24,23],[7,18,7,15,10],

[17,16,3,0,17],[9,20,19,10,11]);

(%o6)


12 25 10 18 7
0 15 24 24 23
7 18 7 15 10
17 16 3 0 17
9 20 19 10 11


(%i7) mod_echelon(B,26);

(%o7)


1 10 1 17 20
0 1 12 12 5
0 0 20 18 8
0 0 12 1 21
0 0 0 0 0


(%i8) mod_rref(B,26);

(%o8)


1 0 11 1 22
0 1 12 12 5
0 0 20 18 8
0 0 12 1 21
0 0 0 0 0


(%i9) mod_rref(B,2);

(%o9)


1 0 1 0 1
0 1 0 0 1
0 0 0 1 1
0 0 0 0 0
0 0 0 0 0


(%i10)mod_rref(B,13);

(%o10)


1 0 0 0 7
0 1 0 0 12
0 0 1 0 6
0 0 0 1 1
0 0 0 0 0



Cryptography Notes: Technology Guides 97



CHAPTER 2. INTRODUCTION TO MAXIMA

2.7 Elliptic Curves

Maxima does not have elliptic curve functions built in but with a little programming we can
create enough functionality to do some experimentation with Elliptic Curve Cryptography.

Although a general elliptic curve is represented by

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

we will make the assumption that we can reduce the equation to the form

y2 = x3 + bx+ c

We will also be restricting ourselves to modular elliptic curves and hence our function will
be working on curves of the form,

y2 = x3 + bx+ c (mod n)

Most of our functions will take the parameters b, c, and n to define the elliptic curve we
are working with.

2.7.1 Points on an Elliptic Curve

To do some basic point finding on an elliptic curve we can use the following functions. The
first will find all of the point on the curve except for the point at infinity.

ec_points(b,c,n):=block([a,lhsv,rhsv],a:[],
for x:0 thru n-1 do (
for y:0 thru n-1 do (
lhsv:mod(yˆ2, n),rhsv:mod(xˆ3+b*x+c, n),
if (lhsv=rhsv) then (a:append(a,[[x,y]])))),
a)$

The next function simply adds in the point at infinity. We chose to use Maxima’s inf
infinity for this.

ec_allpoints(b,c,n):=block([a,t],a:ec_points(b,c,n),t:inf,
a:append(a,[t]),
a)$

To simply return the number of points on the curve we could use the following. Note
that this function included the point at infinity as part of the count.

ec_order(b,c,n):=block([a,lhsv,rhsv,x,y],a:1,
for x:0 thru n-1 do (
for y:0 thru n-1 do (
lhsv:mod(yˆ2, n),rhsv:mod(xˆ3+b*x+c, n),
if (lhsv=rhsv) then (a:a+1))),
a)$

If one takes a quick look at the code it is clear, even if you never programmed in Maxima,
that these are brute force algorithms and hence not the most efficient. So one should be
careful with using large moduli.

For example, if we wanted to find the points on the curve y2 = x3 + x + 1 (mod 5) we
could use the following commands.

Cryptography Notes: Technology Guides 98



CHAPTER 2. INTRODUCTION TO MAXIMA

(% i2) ec points(1,1,5);

[[0, 1], [0, 4], [2, 1], [2, 4], [3, 1], [3, 4], [4, 2], [4, 3]] (% o2)

(% i3) ec allpoints(1,1,5);

[[0, 1], [0, 4], [2, 1], [2, 4], [3, 1], [3, 4], [4, 2], [4, 3],∞] (% o3)

(% i4) ec order(1,1,5);

9 (% o4)

Note that the output is a list of pair lists. Each pair is a single point on the curve and
the single list notation makes it easy to load into other Maxima functions. For example, to
plot the points on the curve y2 = x3 +x+1 (mod 17) we could use the following commands.

(% i4) pts:ec points(1,1,17)$
(% i5) plot2d([discrete,pts],[style,points]);

y

x

	0

	2

	4

	6

	8

	10

	12

	14

	16

	0 	2 	4 	6 	8 	10 	12 	14 	16

We have also included a function that will do the same thing in one step.

ec_plot(b,c,n):=block([pts],
pts:ec_points(b,c,n),
plot2d([discrete,pts],[style,points])

)$

So the command ec_plot(1,1,17) will produce the same graph. We can check if a
point is on a given curve using,

Cryptography Notes: Technology Guides 99



CHAPTER 2. INTRODUCTION TO MAXIMA

ec_pointOnCurve(b,c,n,pt):=block([lhsv,rhsv],
lhsv:mod(pt[2]ˆ2, n),
rhsv:mod(pt[1]ˆ3+b*pt[1]+c, n),
if (lhsv=rhsv) then true else false)$

In this function the point we are checking needs to be an ordered pair in a list, just like the
output of the point generators. For example,

(% i9) ec pointOnCurve(1,1,5,[3,1]);

true (% o9)

(% i10) ec pointOnCurve(1,1,5,[1,1]);

false (% o10)

We can also find points on a curve given either their x or y coordinate. The following
functions will return a point on the curve if one exists or “none” if there is no point on the
curve with the given x or y coordinate. Note that these are brute force algorithms so use
moduli of a moderate size.

ec_pointWithX(b,c,n,x):=block([y,r],r:none,
for y:0 thru n-1 do (

if (ec_pointOnCurve(b,c,n,[x,y])) then (r:[x,y], y:n)
),r)$

ec_pointWithY(b,c,n,y):=block([x,r],r:none,
for x:0 thru n-1 do (

if (ec_pointOnCurve(b,c,n,[x,y])) then (r:[x,y], x:n)
),r)$

For example, if we wanted to find points on y2 = x3 + x + 1 (mod 5) we could use the
following commands.

(% i3) ec pointWithX(1,1,5,2);

[2, 1] (% o3)

(% i4) ec pointWithX(1,1,5,1);

none (% o4)

(% i5) ec pointWithY(1,1,5,1);

[0, 1] (% o5)

(% i6) ec pointWithY(1,1,5,0);

none (% o6)

Cryptography Notes: Technology Guides 100



CHAPTER 2. INTRODUCTION TO MAXIMA

In Elliptic Curve Cryptography it is common to select the linear term and modulus of
the curve and a particular point you want on the curve and then calculate the constant term
from this information. While this is a simple calculation we created a function to do this.

ec_generateCurveConstant(b,n,pt):=block(
mod(pt[2]ˆ2-(pt[1]ˆ3+b*pt[1]), n)

)$

For example, say we wanted the point (7657, 74389) to be on the curve with linear term
3284 and modulus 3263561.

(% i7) ec generateCurveConstant(3284,3263561,[7657,74389]);

1388410 (% o7)

(% i8) ec pointOnCurve(3284,1388410,3263561,[7657,74389]);

true (% o8)

We find that the curve y2 = x3 + 3284x+ 1388410 (mod 3263561) does the trick.

2.7.2 Arithmetic on an Elliptic Curve

If you have studied elliptic curves you know
that there is a method to add two points
on an elliptic curve to obtain a third point
on the curve. In fact, if you have stud-
ied group theory you know that this point
addition defines an abelian group structure
on the curve. In the case of finite groups
this structure is sometimes cyclic. Although
we will be dealing with curve modulo n we
will briefly discuss the addition law geomet-
rically for elliptic curves in R2. The addition
law in this case has a nice geometrical inter-
pretation that also sheds some light on the
formulas.

To add two points on an elliptic curve A
and B where A 6= B you first draw a straight
line through the two points, this will inter-
sect the curve in another point. Then reflect
this point over the x axis to obtain the sum
of A and B. So in the diagram on the right
we have A+B = F .

Cryptography Notes: Technology Guides 101



CHAPTER 2. INTRODUCTION TO MAXIMA

In the case where A = B, in other words
we want to calculate 2A we take the tangent
line to the elliptic curve at A, this will inter-
sect the curve in another point. Then reflect
this point over the x axis to obtain 2A. So in
the diagram on the right we have 2A = D.

In the cases where the line through A
and B is vertical or if the tangent line in
vertical when calculating 2A the sum is the
point at infinity, ∞. If we translate this ge-
ometric description into algebraic formulas
we have the following Addition Law on el-
liptic curves.

Let E be given by y2 = x3 + bx + c and let
P1 = (x1, y1) and P2 = (x2, y2), then P1 +
P2 = P3 = (x3, y3) where

x3 = m2 − x1 − x2
y3 = m(x1 − x3)− y1

and

m =


y2−y1
x2−x1

if P1 6= P2

3x2
1+b

2y1
if P1 = P2

If the slope m is infinite, then P3 = ∞. There is one additional law: ∞ + P = P for all
points P .

Although these equations were developed using continuous curves and derivatives the
same formulas work for the discrete case of finite curves over a modulus. The tricky point
here is that in the derivation of m we have either x2−x1 or 2y1 in the denominator. So if we
are working modulo n these values need to have multiplicative inverses modulo n. If they do
not have a multiplicative inverse modulo n then the greatest common divisor between them
and n is greater then 1 and in some cases this will lead to a factorization of n.

We have created four Maxima functions to do some arithmetic operations. The first is
a point addition function. This function will return the sum of the input points if it exists
and if not it will return “Error”.

ec_pointAdd(b,c,n,p1,p2):=block([a,m,invy,x,y,err],err:false,
if (p1=inf) then return(p2),
if (p2=inf) then return(p1),
if (p1=Error) then err:true,
if (p2=Error) then err:true,
if (err) then a:0 else (
if (p1=p2) then (

if (mod(2*p1[2],n) = 0 ) then return(inf),

Cryptography Notes: Technology Guides 102



CHAPTER 2. INTRODUCTION TO MAXIMA

if (gcd(2*p1[2],n) > 1) then err:true,
invy:power_mod(2*p1[2],-1,n),
m:mod((3*p1[1]ˆ2+b)*invy,n)

) else (
if (mod(p1[1],n)=mod(p2[1], n)) then return(inf),
if (gcd(p1[1]-p2[1],n) > 1) then err:true,
invy:power_mod(p1[1]-p2[1],-1,n),
m:mod((p1[2]-p2[2])*invy,n)

),
x:mod(mˆ2-p1[1]-p2[1], n),
y:mod(m*(p1[1]-x)-p1[2], n),
a:[x,y]),
if (err) then Error else a)$

For example, say we wanted to add the two points (2, 1) and (4, 2) on the elliptic curve
y2 = x3 + x + 1 (mod 5). We see that the result is the point (3, 1). Additionally, (2, 1) +
(2, 4) =∞ and 2 · (3, 1) = (0, 1). Also, if we were to add the two points (1, 3) and (1771, 705)
on the elliptic curve y2 = x3 + 4x + 4 (mod 2773). We see that the result is an error. This
is because the GCD of x2 − x1 − 1770 and the modulus 2773 is 59 and hence 1770 is not
invertible modulo 2773. The added information is that 59 is a nontrivial factor of 2773. This
also shows that if the modulus is not prime (that is the base structure is not a field) then
the resulting curve with the addition law does not form a group structure, addition is not
closed. It is precisely this fact that is the driver of Lenstra’s Elliptic Curve Factorization
algorithm.

(% i3) ec points(1,1,5);

[[0, 1], [0, 4], [2, 1], [2, 4], [3, 1], [3, 4], [4, 2], [4, 3]] (% o3)

(% i4) ec pointAdd(1,1,5,[2,1],[4,2]);

[3, 1] (% o4)

(% i5) ec pointAdd(1,1,5,[2,1],[2,4]);

∞ (% o5)

(% i6) ec pointAdd(1,1,5,[3,1],[3,1]);

[0, 1] (% o6)

(% i9) ec pointAdd(4,4,2773,[1,3],[1771,705]);

Error (% o9)

We have created two functions for doing scalar multiplication, the first calculates t · P
and the second calculates t! ·P . The scalar multiple function uses a binary decomposition of
the scalar and hence is very fast but the factorial scalar multiple needs to run through each
scalar multiple and can be slow for large values of t.

Cryptography Notes: Technology Guides 103



CHAPTER 2. INTRODUCTION TO MAXIMA

ec_pointScalarMult(b,c,n,t,p1):=block([pt,w],pt:inf,w:true,
if (t < 0) then (t:-t, p1[2]:mod(-p1[2],n)),
while (w) do (

if (mod(t,2)=1) then pt:ec_pointAdd(b,c,n,pt,p1),
p1:ec_pointAdd(b,c,n,p1,p1),
t:floor(t/2),
if (t=0) then w:false

),pt)$

ec_pointFactorialScalarMult(b,c,n,t,p1):=block([i,pt],pt:p1,
for i:2 thru t do (pt:ec_pointScalarMult(b,c,n,i,pt)),

pt)$

For example, say we wanted to calculate 5 · (13, 4), 738956431 · (13, 4), 5! · (13, 4), and
20! · (13, 4) on the curve y2 = x3 + 2x+ 3 (mod 17). The following commands will do these
calculations.

(% i3) ec pointScalarMult(2,3,17,5,[13,4]);

[9, 6] (% o3)

(% i4) ec pointScalarMult(2,3,17,738956431,[13,4]);

[5, 11] (% o4)

(% i5) ec pointFactorialScalarMult(2,3,17,5,[13,4]);

[3, 6] (% o5)

(% i6) ec pointFactorialScalarMult(2,3,17,20,[13,4]);

∞ (% o6)

As we pointed out above, elliptic curves with prime modulus form a group structure. In
group theory the order of an element is of some importance. We have included another brute
force algorithm to calculate the order of a point on the elliptic curve.

ec_pointOrder(b,c,n,pt):=block([p,i,r,w],w:true,i:1,
while (w) do (

p:ec_pointScalarMult(b,c,n,i,pt),
if (p=inf) then (r:i, w:false),
i:i+1

),r)$

For example, calculate the order of (13, 4) on the curve y2 = x3 + 2x+ 3 (mod 17) we do
the following.

(% i7) ec pointOrder(2,3,17,[13,4]);

22 (% o7)

Cryptography Notes: Technology Guides 104



CHAPTER 2. INTRODUCTION TO MAXIMA

2.8 CryptDS.mac

The Maxima scripts that were discussed in this section are all in the CryptDS.mac file that
can be found on my web site. To load all of the functions download the CryptDS.mac file
then in Maxima,

1. Select File > Load Package from the main menu.

2. Navigate to the CryptDS.mac file.

3. Select it and click Open.

At this point all of the functions will be loaded into the Maxima session.

2.8.1 CryptDS.mac Code

from_cf(L):=ratsimp(cfdisrep(L))$

from_cf_n(L, n):=ratsimp(cfdisrep(makelist(L[i], i, 1, n)))$

rref(a):=block([r,c,pc,pcf],[r,c]:matrix_size(a),a:echelon(a),
for i:r thru 2 step -1 do (
pc:0,pcf:false,
for j:1 thru c do (
if (a[i,j]=1 and pcf=false) then (pc:j,pcf:true)),
if pcf then (for j:1 thru i-1 do (a:rowop(a,j,i,a[j,pc])))),
a)$

mat_mod_inverse(M, n):=block(
[TEMPMAT, DET, GCD, INVDET, MADJ, MADJINVDET],
TEMPMAT:mod(M, n),
DET:mod(determinant(TEMPMAT), n),
GCD:gcd(DET, n),
if GCD # 1 then return (false),
INVDET:inv_mod(DET, n),
MADJ:adjoint(TEMPMAT),
MADJINVDET:INVDET*MADJ,
mod(MADJINVDET, n)
)$

mod_echelon(a,n):=block([r,c,k,pc,rn,cn,m,pcf,zpos1,zpos2,cm],
[r,c]:matrix_size(a),a:mod(a,n),
pc:1,
for i:1 thru r do (
if (pc > c) then return(),
pcf:false,
for j:i thru r do (
k:a[j,pc],
if (k#0 and gcd(k,n)=1) then (a:rowswap(a,i,j),pcf:true,return())),
if pcf then (
ik:inv_mod(k,n),
for cn:1 thru c do (a[i,cn]:mod(ik*a[i,cn],n)),
for rn:i+1 thru r do (
m:a[rn,pc],
for cn:1 thru c do (a[rn,cn]:mod(-a[i,cn]*m+a[rn,cn],n)))),
pc:pc+1),
for j:1 thru r-1 do (
cm:false,

Cryptography Notes: Technology Guides 105



CHAPTER 2. INTRODUCTION TO MAXIMA

for i:1 thru r-1 do (
zpos1:c+1,zpos2:c+1,
for cn:1 thru c do (if (a[i,cn]#0 and zpos1=c+1) then (zpos1:cn)),
for cn:1 thru c do (if (a[i+1,cn]#0 and zpos2=c+1) then (zpos2:cn)),
if zpos1 > zpos2 then (a:rowswap(a,i,i+1),cm:true)),
if not cm then return()),
a)$

mod_rref(a,n):=block([r,c,k,pc,rn,cn,m,pcf,npc,zpos1,zpos2,cm],
[r,c]:matrix_size(a),a:mod(a,n),
pc:1,
for i:1 thru r do (
if (pc > c) then return(),
pcf:false,
for j:i thru r do (
k:a[j,pc],
if (k#0 and gcd(k,n)=1) then (a:rowswap(a,i,j),pcf:true,return())),
if pcf then (
ik:inv_mod(k,n),
for cn:1 thru c do (a[i,cn]:mod(ik*a[i,cn],n)),
for rn:i+1 thru r do (
m:a[rn,pc],
for cn:1 thru c do (a[rn,cn]:mod(-a[i,cn]*m+a[rn,cn],n)))),
pc:pc+1),
for i:r thru 2 step -1 do (
pcf:false,npc:false,
for j:1 thru c do (
k:a[i,j],
if (k#0) then (if (k=1) then (pc:j,pcf:true) else npc:true),
if (pcf or npc) then return()),
if pcf then (
for rn:i-1 thru 1 step -1 do (
m:a[rn,pc],
for cn:1 thru c do (a[rn,cn]:mod(-a[i,cn]*m+a[rn,cn],n))))),
for j:1 thru r-1 do (
cm:false,
for i:1 thru r-1 do (
zpos1:c+1,zpos2:c+1,
for cn:1 thru c do (if (a[i,cn]#0 and zpos1=c+1) then (zpos1:cn)),
for cn:1 thru c do (if (a[i+1,cn]#0 and zpos2=c+1) then (zpos2:cn)),
if zpos1 > zpos2 then (a:rowswap(a,i,i+1),cm:true)),
if not cm then return()),
a)$

ec_points(b,c,n):=block([a,lhsv,rhsv],a:[],
for x:0 thru n-1 do (
for y:0 thru n-1 do (
lhsv:mod(yˆ2, n),rhsv:mod(xˆ3+b*x+c, n),
if (lhsv=rhsv) then (a:append(a,[[x,y]])))),
a)$

ec_allpoints(b,c,n):=block([a,t],a:ec_points(b,c,n),t:inf,
a:append(a,[t]),
a)$

ec_pointAdd(b,c,n,p1,p2):=block([a,m,invy,x,y,err],err:false,
if (p1=inf) then return(p2),
if (p2=inf) then return(p1),
if (p1=Error) then err:true,
if (p2=Error) then err:true,
if (err) then a:0 else (
if (p1=p2) then (

if (mod(2*p1[2],n) = 0 ) then return(inf),
if (gcd(2*p1[2],n) > 1) then err:true,
invy:power_mod(2*p1[2],-1,n),
m:mod((3*p1[1]ˆ2+b)*invy,n)

Cryptography Notes: Technology Guides 106



CHAPTER 2. INTRODUCTION TO MAXIMA

) else (
if (mod(p1[1],n)=mod(p2[1], n)) then return(inf),
if (gcd(p1[1]-p2[1],n) > 1) then err:true,
invy:power_mod(p1[1]-p2[1],-1,n),
m:mod((p1[2]-p2[2])*invy,n)

),
x:mod(mˆ2-p1[1]-p2[1], n),
y:mod(m*(p1[1]-x)-p1[2], n),
a:[x,y]),
if (err) then Error else a)$

ec_pointScalarMult(b,c,n,t,p1):=block([pt,w],pt:inf,w:true,
if (t < 0) then (t:-t, p1[2]:mod(-p1[2],n)),
while (w) do (

if (mod(t,2)=1) then pt:ec_pointAdd(b,c,n,pt,p1),
p1:ec_pointAdd(b,c,n,p1,p1),
t:floor(t/2),
if (t=0) then w:false

),pt)$

ec_pointOnCurve(b,c,n,pt):=block([lhsv,rhsv],
lhsv:mod(pt[2]ˆ2, n),
rhsv:mod(pt[1]ˆ3+b*pt[1]+c, n),
if (lhsv=rhsv) then true else false)$

ec_pointFactorialScalarMult(b,c,n,t,p1):=block([i,pt],pt:p1,
for i:2 thru t do (pt:ec_pointScalarMult(b,c,n,i,pt)),

pt)$

ec_order(b,c,n):=block([a,lhsv,rhsv,x,y],a:1,
for x:0 thru n-1 do (
for y:0 thru n-1 do (
lhsv:mod(yˆ2, n),rhsv:mod(xˆ3+b*x+c, n),
if (lhsv=rhsv) then (a:a+1))),
a)$

ec_pointWithX(b,c,n,x):=block([y,r],r:none,
for y:0 thru n-1 do (

if (ec_pointOnCurve(b,c,n,[x,y])) then (r:[x,y], y:n)
),r)$

ec_pointWithY(b,c,n,y):=block([x,r],r:none,
for x:0 thru n-1 do (

if (ec_pointOnCurve(b,c,n,[x,y])) then (r:[x,y], x:n)
),r)$

ec_generateCurveConstant(b,n,pt):=block(
mod(pt[2]ˆ2-(pt[1]ˆ3+b*pt[1]), n)

)$

ec_pointOrder(b,c,n,pt):=block([p,i,r],
for i:1 thru 10ˆ100 do (

p:ec_pointScalarMult(b,c,n,i,pt),
if (p=inf) then (r:i, i:10ˆ1000)

),r)$

ec_plot(b,c,n):=block([pts],
pts:ec_points(b,c,n),
plot2d([discrete,pts],[style,points])

)$

Cryptography Notes: Technology Guides 107



Chapter 3

Introduction to Cryptography
Explorer

3.1 What is Cryptography Explorer?

Cryptography Explorer is a tool that was developed for the investigation of cryptography
and cryptanalysis. It was written mainly to ease the investigation of classical cryptography
methods but it also contains features for modern ciphers as well as tools for investigating
integer factorization and discrete logarithm calculations.

3.2 Introduction

The main window to the Cryptography Explorer program is pictured below.

Figure 3.1: Cryptography Explorer Main Window

108



CHAPTER 3. INTRODUCTION TO CRYPTOGRAPHY EXPLORER

It has a multiple document interface where each cipher and analysis tool has its own child
window. There is a standard help system that can be invoked from the Help menu. There
is also a quick help bar to the right that displays quick help information for the currently
selected cipher or analysis tool. All cipher and analysis tools can be invoked from the main
menu of the program. In this getting started guide we will go over each of the tool windows,
functions, and options.

Input and Output Boxes

The Input and Output boxes are the same for all cipher and analysis tools in the program.
The toolbar at the top of these is really a drop-down menu system. In general, input boxes
are editable and output boxes are not editable. With input boxes the standard keystrokes
for copy and paste are available, and for output boxes the keystroke for copy is available.

Input boxes have the following menu options. In the Tools menu some of the quick
conversion options may not be visible, if that type of conversion is not commonly needed
for the cipher or cipher analysis tool. All input box menus contain a tool option of Convert
Text which allows the user to select any text conversion currently available in the program.

File —

New: Clears the input box.

Open: Opens a text file and places the contents in the input box.

Save As: Saves the current contents of the input box to a text file.

Print: Prints the current contents of the input box to the selected printer.

Print Preview: Prints the current contents of the input box to the print preview
display.

Edit —

Copy: Copies the selected text to the clipboard.

Copy All: Copies the current contents of the input box to the clipboard.

Paste: Pastes the contents of the clipboard to the input box.

Undo: Undoes the last edit.

Redo: Redoes the last edit.

Tools —

Convert to Uppercase: Converts all alphabetic characters to uppercase.

Remove Whitespace: Removes all whitespace in the text, spaces, line brakes, tabs,
....

Remove Punctuation: Removes all punctuation in the text.

Remove Numbers: Removes all numbers in the text.

Cryptography Notes: Technology Guides 109



CHAPTER 3. INTRODUCTION TO CRYPTOGRAPHY EXPLORER

Remove Double Characters: Removes double characters from the text. This is
used primarily in the Playfair cipher and will place a character, usually X, between
double characters. For example, FOOD would be converted to FOXOD.

Convert J to I: This will replace all J’s with I’s and all j’s with i’s. This is used
primarily in the Playfair and ADFGX ciphers.

Convert Text: This opens the text conversion dialog for you to select a special con-
version. The program offers many standard conversions of textual information,
so you will want to see if the program will automatically do a conversion before
you edit the text by hand.

Statistics: Opens a small message box containing character counts and word counts.

Output boxes have the following menu options.

File —

Clear: Clears the input box.

Save As: Saves the current contents of the input box to a text file.

Print: Prints the current contents of the input box to the selected printer.

Print Preview: Prints the current contents of the input box to the print preview
display.

Edit —

Copy: Copies the selected text to the clipboard.

Copy All: Copies the current contents of the input box to the clipboard.

Tools —

Statistics: Opens a small message box containing character counts and word counts.

Print Preview

The Print Preview dialog boxes are the same for all cipher and analysis tools in the program.
The toolbar at the top has three tools, the first toggles the page layout between portrait and
landscape, the second open a page layout dialog that allows you to select the paper size and
set the margins, and the third opens a printer dialog box that allows you to select a printer
and print the document. There is a zoom bar at the bottom of the dialog that will change
the amount of zoom of the preview images.

Cryptography Notes: Technology Guides 110



CHAPTER 3. INTRODUCTION TO CRYPTOGRAPHY EXPLORER

Figure 3.2: Print Preview

Bar Charts

The charts used throughout the program are produced by the same system and hence all
have a similar appearance and options. All of them have a popup menu that can be invoked
by right-clicking on the chart. This popup menu will allows you to save the chart ad a PNG
image, copy the chart to the system clipboard, and to print the chart to a printer. They also
have the ability to display the value of the bar by hovering the cursor over the desired bar,
as shown below.

Figure 3.3: Bar Charts

Cryptography Notes: Technology Guides 111



CHAPTER 3. INTRODUCTION TO CRYPTOGRAPHY EXPLORER

3.3 Ciphers

3.3.1 Monoalphabetic Substitution

The Monoalphabetic Substitution cipher is a rule where each letter of the plaintext is changed
to the same letter for the ciphertext. For example, A is always changed to J, B is always
changed to W, and so on. So in the example window below, T is replaced by S, H by K, I
by Q, and so on.

The Monoalphabetic Substitution window is for creating a simple substitution cipher is
below. The upper half of the window contains the input and output boxes, each with their
own toolbar/menu. The bottom half of the window contains the options for the cipher and
the Input/Output Correspondence.

Figure 3.4: Monoalphabetic Substitution Cipher Tool

How to Use the Tool

To Encrypt —

1. Input the plaintext message into the Input box. Make sure that the characters
are from the same character set as the one selected. Note that you can change the
character set using the selection box below the Input box. There are also some
quick conversion tools in the Tools menu.

Cryptography Notes: Technology Guides 112



CHAPTER 3. INTRODUCTION TO CRYPTOGRAPHY EXPLORER

2. Input a Substitution Key. There are special tools in the Tools menu for creating
shift, affine and random cipher keys.

3. Click the Encrypt button. At this point the Output box will display the ciphertext
message and the Input/Output Correspondence table will show the encryption
character by character.

To Decrypt —

1. Input the ciphertext message into the Input box. Make sure that the characters
are from the same character set as the one selected. Note that you can change the
character set using the selection box below the Input box. There are also some
quick conversion tools in the Tools menu.

2. Input a Substitution Key. There are special tools in the Tools menu for creating
shift, affine and random cipher keys.

3. Click the Decrypt button. At this point the Output box will display the plaintext
message and the Input/Output Correspondence table will show the encryption
character by character.

Options

• In the lower left quarter of the window is the substitution that will be used for either
encoding or decoding and a selection for the character set to use for the substitution.
The character sets are as follows:

Uppercase Alphabet: A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Uppercase Alphabet with Numbers: A B C D E F G H I J K L M N O P Q R
S T U V W X Y Z 0 1 2 3 4 5 6 7 8 9

Uppercase & Lowercase Alphabet: A B C D E F G H I J K L M N O P Q R S
T U V W X Y Z a b c e d f g h i j k l m n o p q r s t u v w x y z

Uppercase & Lowercase Alphabet with Numbers: A B C D E F G H I J K L
M N O P Q R S T U V W X Y Z a b c e d f g h i j k l m n o p q r s t u v w x y
z 0 1 2 3 4 5 6 7 8 9

Keyboard Characters: A B C D E F G H I J K L M N O P Q R S T U V W X Y
Z a b c e d f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9 ! @ # $ %
ˆ & * ( ) + - = [ ] { } — ; ’ : , . / < > ?

User Defined Language: This will open an Open dialog box that will allow you to
select a user defined language. Information on creating a user defined language
can be found in the User Defined Language Creator tool section.

• The substitution grid has a toolbar with the following options.

File —

New: Clears the key grid.

Cryptography Notes: Technology Guides 113



CHAPTER 3. INTRODUCTION TO CRYPTOGRAPHY EXPLORER

Open: Opens a substitution key file and loads it into the key grid.

Save As: Saves the current key to a substitution key file.

Print: Prints the current key to the selected printer.

Print Preview: Prints the current key to the print preview display.

Edit —

Copy: Copies the entire substitution key grid to the clipboard.

Copy as LaTeX (tabular): Copies the entire substitution key grid to the clip-
board using the syntax for the LATEX tabular environment.

Copy as LaTeX (longtable): Copies the entire substitution key grid to the
clipboard using the syntax for the LATEX longtable environment. ¡/UL¿

Tools —

Create Shift Key: Opens a dialog box to allow the user to select the amount
of shift. When the user finishes the shift selection the program will populate
the Ciphertext column with the shift key.

Create Affine Key: Opens a dialog box to allow the user to select the multiplier
and shift. When the user finishes the input the program will populate the
Ciphertext column with the affine key.

Create Random Key: This will populate the Ciphertext column with a ran-
dom key.

Create Random Kama-Sutra Key: This will populate the Ciphertext col-
umn with a random Kama-Sutra key, where each letter is paired with another
letter.

• The Input/Output Correspondence grid has a toolbar with the following options.

File —

Save As: Saves the current Input/Output Correspondence grid to a text file.

Print: Prints the current Input/Output Correspondence grid to the selected
printer.

Print Preview: Prints the current Input/Output Correspondence grid to the
print preview display.

Edit —

Copy: Copies the entire Input/Output Correspondence grid to the clipboard.

Copy as LaTeX (tabular): Copies the entire Input/Output Correspondence
grid to the clipboard using the syntax for the LATEX tabular environment.

Copy as LaTeX (longtable): Copies the entire Input/Output Correspondence
grid to the clipboard using the syntax for the LATEX longtable environment.

• The Encrypt and Decrypt buttons work as follows.

Cryptography Notes: Technology Guides 114



CHAPTER 3. INTRODUCTION TO CRYPTOGRAPHY EXPLORER

– The Encrypt and Decrypt buttons will, of course, apply the substitution cipher
to the input and place the result in the output.

– Encryption will substitute the right hand column for the left. In other words, the
the substitution will go from left to right.

– Decryption will substitute the left hand column for the right. In other words, the
the substitution will go from right to left.

Notes

• The user can input the substitution by hand as well as use the tools.

• The program is not limited to a one-to-one correspondence between plaintext and
ciphertext characters. For example, if there is a character that is not assigned a
substitution the program will place an underscore at that position to indicate that the
character still needs to be assigned. Likewise, if a character is assigned more than
one substitution the program will randomly select one of the options for each of those
characters.

3.3.2 Vigenère

The Vigenère cipher is a method of encrypting alphabetic text by using a series of different
Caesar ciphers based on the letters of a keyword. It is a simple form of polyalphabetic
substitution. The Vigenère cipher was invented by Giovan Battista Bellaso in 1553 but was
later misattributed to Blaise de Vigenère in the 19th century. It was a very strong cipher for
the time and was used for several centuries, in fact, it was used by the Confederate Army in
the Civil War, even when more secure methods were known.

How to Use the Tool

To Encrypt —

1. Input the plaintext message into the Input box. Make sure that the characters
are from the same character set as the one selected. Note that you can change the
character set using the selection box below the Input box. There are also some
quick conversion tools in the Tools menu.

2. Input a Keyword. The keyword will determine the shift amounts for each position
of the plaintext. The keyword must also be from the same character set as the
one selected.

3. Select the Key Type. The key type determines how the key is extended to fit
the size of the message. The Repeated Keyword option is the classical Vigenère
cipher that simply repeats the keyword enough times to cover the message. The
Plaintext Autokey option places the plaintext message after the keyword and thus
uses the plaintext as the shifts after the keyword is done. The Ciphertext Autokey

Cryptography Notes: Technology Guides 115



CHAPTER 3. INTRODUCTION TO CRYPTOGRAPHY EXPLORER

Figure 3.5: Vigenère Cipher Tool

option places the ciphertext after the keyword and thus uses the ciphertext as
the shifts after the keyword is done.

4. Click the Encrypt button. At this point the Output box will display the ciphertext
message and the Input/Output Correspondence table will show the encryption
and key character by character.

To Decrypt —

1. Input the ciphertext message into the Input box. Make sure that the characters
are from the same character set as the one selected. Note that you can change the
character set using the selection box below the Input box. There are also some
quick conversion tools in the Tools menu.

2. Input a Keyword. The keyword will determine the shift amounts for each position
of the ciphertext. The keyword must also be from the same character set as the
one selected.

3. Select the Key Type. The key type determines how the key is extended to fit
the size of the message. The Repeated Keyword option is the classical Vigenère
cipher that simply repeats the keyword enough times to cover the message. The
Plaintext Autokey option places the plaintext message after the keyword and thus
uses the plaintext as the shifts after the keyword is done. The Ciphertext Autokey
option places the ciphertext after the keyword and thus uses the ciphertext as the
shifts after the keyword is done.

Cryptography Notes: Technology Guides 116



CHAPTER 3. INTRODUCTION TO CRYPTOGRAPHY EXPLORER

4. Click the Decrypt button. At this point the Output box will display the plaintext
message and the Input/Output Correspondence table will show the encryption
and key character by character.

Options

• In the lower left quarter of the window is the key that will be used for either encoding
or decoding and a selection for the character set to use for the cipher. The character
sets are as follows:

Uppercase Alphabet: A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Uppercase Alphabet with Numbers: A B C D E F G H I J K L M N O P Q R
S T U V W X Y Z 0 1 2 3 4 5 6 7 8 9

Uppercase & Lowercase Alphabet: A B C D E F G H I J K L M N O P Q R S
T U V W X Y Z a b c e d f g h i j k l m n o p q r s t u v w x y z

Uppercase & Lowercase Alphabet with Numbers: A B C D E F G H I J K L
M N O P Q R S T U V W X Y Z a b c e d f g h i j k l m n o p q r s t u v w x y
z 0 1 2 3 4 5 6 7 8 9

Keyboard Characters: A B C D E F G H I J K L M N O P Q R S T U V W X Y
Z a b c e d f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9 ! @ # $ %
ˆ & * ( ) + - = [ ] { } — ; ’ : , . / < > ?

User Defined Language: This will open an Open dialog box that will allow you to
select a user defined language. Information on creating a user defined language
can be found in the User Defined Language Creator tool section.

• The Keyword has a toolbar with the following options.

File —

New: Clears the keyword.

Open: Opens a keyword file and loads it into the keyword.

Save As: Saves the current keyword to a keyword file.

Print: Prints the current keyword to the selected printer.

Print Preview: Prints the current keyword to the print preview display.

Edit —

Copy: Copies the keyword to the clipboard.

Paste: Pastes the keyword from the clipboard.

Tools —

Convert to Uppercase: Converts all alphabetic characters to uppercase.

Remove Whitespace: Removes all whitespace in the text, spaces, line brakes,
tabs, ....

Cryptography Notes: Technology Guides 117



CHAPTER 3. INTRODUCTION TO CRYPTOGRAPHY EXPLORER

Remove Punctuation: Removes all punctuation in the text.

• The Input/Output Correspondence grid has a toolbar with the following options.

File —

Save As: Saves the current Input/Output Correspondence grid to a text file.

Print: Prints the current Input/Output Correspondence grid to the selected
printer.

Print Preview: Prints the current Input/Output Correspondence grid to the
print preview display.

Edit —

Copy: Copies the entire Input/Output Correspondence grid to the clipboard.

Copy as LaTeX (tabular): Copies the entire Input/Output Correspondence
grid to the clipboard using the syntax for the LATEX tabular environment.

Copy as LaTeX (longtable): Copies the entire Input/Output Correspondence
grid to the clipboard using the syntax for the LATEX longtable environment.

• The Encrypt and Decrypt buttons will, of course, apply the Vigenère cipher to the
input and place the result in the output.

– Encryption will do shifts in the positive direction.

– Decryption will do shifts in the negative direction.

• The key type determines how the key is extended to fit the size of the message.

Repeated Keyword: The Repeated Keyword option is the classical Vigenère cipher
that simply repeats the keyword enough times to cover the message.

Plaintext Autokey: The Plaintext Autokey option places the plaintext message after
the keyword and thus uses the plaintext as the shifts after the keyword is done.

Ciphertext Autokey: The Ciphertext Autokey option places the ciphertext after
the keyword and thus uses the ciphertext as the shifts after the keyword is done.

3.3.3 Scytale

The Scytale cipher consisted of a tapered wooden staff around which a strip of parchment
(leather or papyrus were also used) was spirally wrapped, layer upon layer. The secret
message was written on the parchment lengthwise down the staff. Then the parchment was
unwrapped and sent. By themselves, the letters on the parchment were disconnected and
made no sense until rewrapped around a staff of equal proportions, at which time the letters
would realign to once again make sense.

Cryptography Notes: Technology Guides 118



CHAPTER 3. INTRODUCTION TO CRYPTOGRAPHY EXPLORER

Figure 3.6: Scytale Cipher Tool

How to Use the Tool

To Encrypt —

1. Input the plaintext message into the Input box.

2. Input the number of letters that are written around the rod before coming back
to the starting position.

3. Click the Encrypt button. At this point the Output box will display the ciphertext
message.

To Decrypt —

1. Input the ciphertext message into the Input box.

2. Input the number of letters that are written around the rod before coming back
to the starting position.

3. Click the Decrypt button. At this point the Output box will display the plaintext
message.

3.3.4 Rail Fence

The Rail Fence cipher, like the Scytale cipher, is a transposition cipher. There are several
ways that the rail fence can be set up, we use the most common method found in the
literature, also known as the zig-zag cipher. Say we are using 3 rails and we encrypt the
message A COUPLE OF RAILS ARE EASY TO CRACK. Removing the white-space (which
is not necessary) we get ACOUPLEOFRAILSAREEASYTOCRACK, now we zig-zag the
message on three rails or rows of a grid.

A P F L E Y R
C U L O R I S R E S T C A K

O E A A A O C

We then write the ciphertext as the rails or rows in order from left to right, to get
APFLEYRCULORISRESTCAKOEAAAOC.

Cryptography Notes: Technology Guides 119



CHAPTER 3. INTRODUCTION TO CRYPTOGRAPHY EXPLORER

Figure 3.7: Rail Fence Cipher Tool

How to Use the Tool

To Encrypt —

1. Input the plaintext message into the Input box.

2. Input the number of rails being used.

3. Click the Encrypt button. At this point the Output box will display the ciphertext
message.

To Decrypt —

1. Input the ciphertext message into the Input box.

2. Input the number of rails being used.

3. Click the Decrypt button. At this point the Output box will display the plaintext
message.

3.3.5 Columnar

The Columnar Cipher is a symmetric transposition cipher that was used through the 1950’s
either by itself, multiple times, or in conjunction with substitution techniques.

The program offers the user two methods, the classical columnar and the Myszkowski
method. For the classical columnar the keyword cannot have any repeated letters in it.
The keyword characters become the headers of columns, the message is written left to right
and from top to bottom in these columns. Finally, the columns are read in alphabetical
order to create the ciphertext. For example, say our keyword is BREAK and the message is
THECOLUMNARISATRANSPOSITIONCIPHER. The grid is set up as follows,

Cryptography Notes: Technology Guides 120



CHAPTER 3. INTRODUCTION TO CRYPTOGRAPHY EXPLORER

B R E A K
T H E C O
L U M N A
R I S A T
R A N S P
O S I T I
O N C I P
H E R

Then the columns are read in alphabetical order, so we get CNASTI TLRROOH EM-
SNICR OATPIP HUIASNE, and then removing spaces gives us the ciphertext of CNASTI-
TLRROOHEMSNICROATPIPHUIASNE.

Figure 3.8: Columnar Cipher Tool: Classical Mode

A variant of the classical columnar cipher was developed by Émile Victor Théodore
Myszkowski in 1902. With the Myszkowski method, duplicate characters in the keyword
are allowed. In the case of duplications, the ciphertext is written left to right between the
duplicate columns. With unique letters the column is read as with the classical method.
For example, say our keyword is BOOKBAG and the message is again THECOLUMNAR-
ISATRANSPOSITIONCIPHER. The grid is set up as follows,

B O O K B A G
T H E C O L U
M N A R I S A
T R A N S P O
S I T I O N C
I P H E R

The first column to read is the A column, and there is only one of these, so we get LSPN.
Next is the B columns, with two of these we read each row and get, TO, MI, TS, SO, and IR,

Cryptography Notes: Technology Guides 121



CHAPTER 3. INTRODUCTION TO CRYPTOGRAPHY EXPLORER

making TOMITSSOIR. Then the G column, UAOC, then the K column CRNIE. Finally,
the O column which gives, HE, NA, RA, IT, and PH, making HENARAITPH. The final
ciphertext would be LSPNTOMITSSOIRUAOCCRNIEHENARAITPH.

Decryption of either method is simply done in reverse.

Figure 3.9: Columnar Cipher Tool: Myszkowski Mode

How to Use the Tool

To Encrypt —

1. Input the plaintext message into the Input box.

2. Input a Keyword and select the type of columnar algorithm.

3. Click the Encrypt button. At this point the Output box will display the cipher-
text.

To Decrypt —

1. Input the ciphertext message into the Input box.

2. Input a Keyword and select the type of columnar algorithm.

3. Click the Decrypt button. At this point the Output box will display the plaintext.

Options

• The Type specifies the algorithm that is used, either the classical columnar or the
Myszkowski method.

Notes

• The keyword need not be only upper-case letters. The columns are ordered by the char-
acter’s ASCII number and hence any keyboard character can be used in the keyword.

Cryptography Notes: Technology Guides 122



CHAPTER 3. INTRODUCTION TO CRYPTOGRAPHY EXPLORER

Conventionally, the keyword is all upper-case alphabetic letters, but it is not required.
A note about using ASCII numbers for ordering is that A and a have different ASCII
numbers so those columns would not be considered to have the same letter.

3.3.6 Two Square

The Two Square Cipher, like the Playfair cipher, is a digram substitution symmetric encryp-
tion technique.

There are several slightly different ways to implement this cipher. The one we use equates
I and J in order to get 26 letters down to 25, to fit in the 5 X 5 grid. So the plaintext cannot
have any J’s in it. There is a tool in the input toolbar that will automatically convert J
to I. Also like the Playfair cipher, the number of characters in the plaintext must be even,
since the technique uses a digram substitution. This tool also supports both vertical and
horizontal alignment of the 5 X 5 grids.

The Two Square cipher uses two 5 X 5 grids of letters arranged either vertically or
horizontally. The 5 X 5 grids are the key matrices. The program allows the user to input the
key matrices either by inputting the matrix or by inputting a key word. If the user inputs
a keyword then the matrix is created using the same method as with the Playfair cipher.
The keyword is altered by changing all J’s to I’s and then all repeated letters are removed,
so the keyword FOOD is replaced with FOD and the keyword EXAMPLE is replaced by
EXAMPL. The matrix is then formed by placing the keyword at the beginning and then
filling the remainder of the matrix with the rest of the alphabet letters in order. So the
keywords, TWO and SQUARE produce the matrices,

T W O A B
C D E F G
H I K L M
N P Q R S
U V X Y Z

and

S Q U A R
E B C D F
G H I K L
M N O P T
V W X Y Z

Then when placed in the larger grid, it becomes either,

Cryptography Notes: Technology Guides 123



CHAPTER 3. INTRODUCTION TO CRYPTOGRAPHY EXPLORER

T W O A B
C D E F G
H I K L M
N P Q R S
U V X Y Z

S Q U A R
E B C D F
G H I K L
M N O P T
V W X Y Z

or

T W O A B S Q U A R
C D E F G E B C D F
H I K L M G H I K L
N P Q R S M N O P T
U V X Y Z V W X Y Z

To encrypt find the positions of the digram characters, the first from either the top or
left grid and the second from the right or lower grid. Using these two positions, create a
rectangle, and read off the letters at the other two vertices, left or top followed by right or
lower. These are your ciphertext letters. If the digram is in the same column or the same
row the digram is unchanged, so some digrams will be the same in the plaintext the the
ciphertext.

So in vertical mode, TH becomes WG, IS becomes HQ, AD becomes AD, and so on.
In horizontal mode, TH becomes HQ, IS becomes WG, TR becomes TR, and so on. The
decryption process is exactly like the encryption process.

In key matrix mode, the keyword input is replaced with two 5 X 5 grids.

How to Use the Tool

To Encrypt or Decrypt —

1. Input the plaintext (or ciphertext) message into the Input box. Make sure that
the characters are all uppercase and all J’s are converted to I’s. Note that the
Input toolbar has an option for this conversion.

2. Select either the Keyword or Key Matrix mode or operation.

3. Input a Keyword or Matrix.

4. Click the Encrypt/Decrypt button. At this point the Output box will display the
ciphertext (or plaintext) message and the Input/Output Correspondence table
will show the encryption/decryption character pair by character pair.

Cryptography Notes: Technology Guides 124



CHAPTER 3. INTRODUCTION TO CRYPTOGRAPHY EXPLORER

Figure 3.10: Two Square Cipher Tool: Keyword Mode

Figure 3.11: Two Square Cipher Tool: Key Matrix Mode

Options

• The Key Mode can be set to either Keyword or Key Matrix mode and either vertical
or horizontal alignment. With the Keyword mode, the user inputs two keywords, one
for the upper right grid and one for the lower left grid. The program automatically
converts the keyword to uppercase, ignores and repeated characters and changes any
J’s to I’s. These conversions are done internally, so the user does not see any change in
the keyword. The altered keyword is then used to fill out the 5 X 5 grids by starting
on row one left to right and moving to subsequent rows when necessary. When the

Cryptography Notes: Technology Guides 125



CHAPTER 3. INTRODUCTION TO CRYPTOGRAPHY EXPLORER

characters of the keyword have been used, the remaining cells in the grid are filled in
with the missing letters going in alphabetical order.

• The Key Matrix mode allows the user to create the matrix by hand. This mode comes
in handy when one was trying to break a Two Square cipher. In this mode the user
needs to enter the characters into each cell of the table.

• In Keyword mode the Key menu has the following options.

File —

New: Clears the keywords.

Open: Opens a keyword file and loads it into the keywords.

Save As: Saves the current keywords to a keyword file.

Print: Prints the current keywords to the selected printer.

Print Preview: Prints the current keywords to the print preview display.

Edit —

Copy: Copies the keywords to the clipboard.

Paste: Pastes the keywords from the clipboard.

Tools —

Convert to Uppercase: Converts all alphabetic characters to uppercase.

Remove Whitespace: Removes all whitespace in the text, spaces, line brakes,
tabs, ....

Remove Punctuation: Removes all punctuation in the text.

• In Key Matrix mode the Key menu has the following options.

File —

New: Clears the matrices.

Open: Opens a key matrix file and loads it into the two tables.

Save As: Saves the current matrices to a key matrix file.

Print: Prints the current matrices to the selected printer.

Print Preview: Prints the current matrices to the print preview display.

Edit —

Copy: Copies the entire key grids to the clipboard.

Copy as LaTeX (tabular): Copies the entire key grids to the clipboard using
the syntax for the LATEX tabular environment.

Copy as LaTeX (longtable): Copies the entire key grids to the clipboard using
the syntax for the LATEX longtable environment.

Tools —

Cryptography Notes: Technology Guides 126



CHAPTER 3. INTRODUCTION TO CRYPTOGRAPHY EXPLORER

Convert to Uppercase: Converts all matrix cells to uppercase.

Check Matrices: Checks the validity of the current tables and displays a mes-
sage of either valid or invalid.

• The Input/Output Correspondence grid has a toolbar with the following options.

File —

Save As: Saves the current Input/Output Correspondence grid to a text file.

Print: Prints the current Input/Output Correspondence grid to the selected
printer.

Print Preview: Prints the current Input/Output Correspondence grid to the
print preview display.

Edit —

Copy: Copies the entire Input/Output Correspondence grid to the clipboard.

Copy as LaTeX (tabular): Copies the entire Input/Output Correspondence
grid to the clipboard using the syntax for the LATEX tabular environment.

Copy as LaTeX (longtable): Copies the entire Input/Output Correspondence
grid to the clipboard using the syntax for the LATEX longtable environment.

Notes

• There are several slightly different ways to implement this cipher. The one we use does
the following.

– We equate I and J in order to get 26 letters down to 25, so the plaintext cannot
have any J’s in it.

– As with all Playfair ciphers, when the plaintext is broken into blocks of 2, so
the size of the message must be even, you may need to pad a message with a
character.

3.3.7 Four Square

The Four Square Cipher, like the Playfair cipher, is a digram substitution symmetric en-
cryption technique.

There are several slightly different ways to implement this cipher. The one we use equates
I and J in order to get 26 letters down to 25, to fit in the 5 X 5 grid. So the plaintext cannot
have any J’s in it. There is a tool in the input toolbar that will automatically convert J to I.
Also like the Playfair cipher, the number of characters in the plaintext must be even, since
the technique uses a digram substitution.

The Four Square cipher uses four 5 X 5 grids of letters arranged in a 2 X 2 grid. The
upper left and lower right 5 X 5 grids are the alphabet, in order with I = J, reading left to
right and top to bottom. Specifically,

Cryptography Notes: Technology Guides 127



CHAPTER 3. INTRODUCTION TO CRYPTOGRAPHY EXPLORER

a b c d e
f g h i k
l m n o p
q r s t u
v w x y z

The upper right and lower left 5 X 5 grids are the key matrices. The program allows the
user to input the key matrices either by inputting the matrix or by inputting a key word.
If the user inputs a keyword then the matrix is created using the same method as with the
Playfair cipher. The keyword is altered by changing all J’s to I’s and then all repeated letters
are removed, so the keyword FOOD is replaced with FOD and the keyword EXAMPLE is
replaced by EXAMPL. The matrix is then formed by placing the keyword at the beginning
and then filling the remainder of the matrix with the rest of the alphabet letters in order.
So the keywords, FOUR and SQUARE produce the matrices

F O U R A
B C D E G
H I K L M
N P Q S T
V W X Y Z

and

S Q U A R
E B C D F
G H I K L
M N O P T
V W X Y Z

Then when placed in the larger grid, it becomes,

a b c d e F O U R A
f g h i k B C D E G
l m n o p H I K L M
q r s t u N P Q S T
v w x y z V W X Y Z

S Q U A R a b c d e
E B C D F f g h i k
G H I K L l m n o p
M N O P T q r s t u
V W X Y Z v w x y z

To encrypt find the positions of the digram characters in the plain alphabet grids, upper
left for the first letter and lower right for the second. Using these two positions, create a

Cryptography Notes: Technology Guides 128



CHAPTER 3. INTRODUCTION TO CRYPTOGRAPHY EXPLORER

Figure 3.12: Four Square Cipher Tool: Keyword Mode

rectangle, and read off the letters at the other two vertices, upper right followed by lower
left. These are your ciphertext letters. So TH becomes QD, IS becomes DP, and so on. To
decrypt, the process is simply reversed, the input digram is found in the key matrices, create
the rectangle, and read off the plaintext from the alphabet grids.

In key matrix mode, the keyword input is replaced with two 5 X 5 grids.

Figure 3.13: Four Square Cipher Tool: Matrix Mode

Cryptography Notes: Technology Guides 129



CHAPTER 3. INTRODUCTION TO CRYPTOGRAPHY EXPLORER

How to Use the Tool

To Encrypt —

1. Input the plaintext message into the Input box. Make sure that the characters
are all uppercase and all J’s are converted to I’s. Note that the Input toolbar has
an option for this conversion.

2. Select either the Keyword or Key Matrix mode or operation.

3. Input a Keyword or Matrix.

4. Click the Encrypt button. At this point the Output box will display the ciphertext
message and the Input/Output Correspondence table will show the encryption
character pair by character pair.

To Decrypt —

1. Input the ciphertext message into the Input box. Make sure that the characters
are all uppercase and all J’s are converted to I’s. Note that the Input toolbar has
an option for this conversion.

2. Select either the Keyword or Key Matrix mode or operation.

3. Input a Keyword or Matrix.

4. Click the Decrypt button. At this point the Output box will display the plaintext
message and the Input/Output Correspondence table will show the decryption
character pair by character pair.

Options

• The Key Mode can be set to either Keyword or Key Matrix mode. With the Keyword
mode, the user inputs two keywords, one for the upper right grid and one for the lower
left grid. The program automatically converts the keyword to uppercase, ignores and
repeated characters and changes any J’s to I’s. These conversions are done internally,
so the user does not see any change in the keyword. The altered keyword is then
used to fill out the 5 X 5 grids by starting on row one left to right and moving to
subsequent rows when necessary. When the characters of the keyword have been used,
the remaining cells in the grid are filled in with the missing letters going in alphabetical
order.

• The Key Matrix mode allows the user to create the matrix by hand. This mode comes
in handy when one was trying to break a Four Square cipher. In this mode the user
needs to enter the characters into each cell of the table.

• In Keyword mode the Key menu has the following options.

File —

New: Clears the keywords.

Cryptography Notes: Technology Guides 130



CHAPTER 3. INTRODUCTION TO CRYPTOGRAPHY EXPLORER

Open: Opens a keyword file and loads it into the keywords.

Save As: Saves the current keywords to a keyword file.

Print: Prints the current keywords to the selected printer.

Print Preview: Prints the current keywords to the print preview display.

Edit —

Copy: Copies the keywords to the clipboard.

Paste: Pastes the keywords from the clipboard.

Tools —

Convert to Uppercase: Converts all alphabetic characters to uppercase.

Remove Whitespace: Removes all whitespace in the text, spaces, line brakes,
tabs, ....

Remove Punctuation: Removes all punctuation in the text.

• In Key Matrix mode the Key menu has the following options.

File —

New: Clears the matrices.

Open: Opens a key matrix file and loads it into the two tables.

Save As: Saves the current matrices to a key matrix file.

Print: Prints the current matrices to the selected printer.

Print Preview: Prints the current matrices to the print preview display.

Edit —

Copy: Copies the entire key grids to the clipboard.

Copy as LaTeX (tabular): Copies the entire key grids to the clipboard using
the syntax for the LATEX tabular environment.

Copy as LaTeX (longtable): Copies the entire key grids to the clipboard using
the syntax for the LATEX longtable environment.

Tools —

Convert to Uppercase: Converts all matrix cells to uppercase.

Check Matrices: Checks the validity of the current tables and displays a mes-
sage of either valid or invalid.

• The Input/Output Correspondence grid has a toolbar with the following options.

File —

Save As: Saves the current Input/Output Correspondence grid to a text file.

Print: Prints the current Input/Output Correspondence grid to the selected
printer.

Cryptography Notes: Technology Guides 131



CHAPTER 3. INTRODUCTION TO CRYPTOGRAPHY EXPLORER

Print Preview: Prints the current Input/Output Correspondence grid to the
print preview display.

Edit —

Copy: Copies the entire Input/Output Correspondence grid to the clipboard.

Copy as LaTeX (tabular): Copies the entire Input/Output Correspondence
grid to the clipboard using the syntax for the LATEX tabular environment.

Copy as LaTeX (longtable): Copies the entire Input/Output Correspondence
grid to the clipboard using the syntax for the LATEX longtable environment.

Notes

• There are several slightly different ways to implement this cipher. The one we use does
the following.

– We equate I and J in order to get 26 letters down to 25, so the plaintext cannot
have any J’s in it.

– As with all Playfair ciphers, when the plaintext is broken into blocks of 2, so
the size of the message must be even, you may need to pad a message with a
character.

3.3.8 Playfair

The Playfair cipher is a symmetric encryption technique and was the first digram substitution
cipher. It was invented in 1854 by Charles Wheatstone, but was given the name of Lord
Playfair (Lyon Playfair) who promoted the use of the cipher. The Playfair cipher was used
as a field cipher by British forces in the Second Boer War and in World War I and by the
British and Australians during World War II.

There are several slightly different ways to implement this cipher. The one we use equates
I and J in order to get 26 letters down to 25, to fit in the 5 X 5 grid. So the plaintext cannot
have any J’s in it. There is a tool in the input toolbar that will automatically convert J
to I. Also, as with all Playfair ciphers, when the plaintext is broken into blocks of 2, there
cannot be duplicate characters. There is another tool in the input menu that will remove
these automatically by placing an X between the double letters. For example, FOOD would
be converted to FOXOD. While it is true that not all duplicate letters need to be replaced,
this tool will replace all repeated characters, whether or not the duplication would show up
in the same block of 2.

How to Use the Tool

To Encrypt —

1. Input the plaintext message into the Input box. Make sure that the characters
are all uppercase, no 2-block duplicate letters, and all J’s are converted to I’s.

Cryptography Notes: Technology Guides 132



CHAPTER 3. INTRODUCTION TO CRYPTOGRAPHY EXPLORER

Figure 3.14: Playfair Cipher Tool: Keyword Mode

Note that the Input toolbar has options in the Tools menu for these standard
conversions.

2. Select either the Keyword or Key Matrix mode or operation.

3. Input a Keyword or Matrix.

4. Click the Encrypt button. At this point the Output box will display the ciphertext
message and the Input/Output Correspondence table will show the encryption
character pair by character pair.

To Decrypt —

1. Input the ciphertext message into the Input box. Make sure that the characters
are all uppercase, no 2-block duplicate letters, and all J’s are converted to I’s.

2. Select either the Keyword or Key Matrix mode or operation.

3. Input a Keyword or Matrix.

4. Click the Decrypt button. At this point the Output box will display the plaintext
message and the Input/Output Correspondence table will show the decryption
character pair by character pair.

Cryptography Notes: Technology Guides 133



CHAPTER 3. INTRODUCTION TO CRYPTOGRAPHY EXPLORER

Options

• The Key Mode can be set to either Keyword or Key Matrix mode. With the Keyword
mode, as pictured above, the user inputs a single keyword, The program automatically
converts the keyword to uppercase, ignores and repeated characters and changes any
J’s to I’s. These conversions are done internally, so the user does not see any change
in the keyword. The altered keyword is then used to fill out the Playfair 5 X 5 grid
by starting on row one left to right and moving to subsequent rows when necessary.
When the characters of the keyword have been used, the remaining cells in the grid
are filled in with the missing letters going in alphabetical order. So in the example
pictured above, the keyword PLAYFAIR would be converted to PLAYFIR and then P
L A Y F would be in the first row and I R would be in the first two cells in the second
row.

• The Key Matrix mode (pictured below) allows the user to create the matrix by hand.
This mode comes in handy when one was trying to break a Playfair cipher. In this
mode the user needs to enter the characters into each cell of the table. In the example
below, the table is the same here as it would be for the keyword PLAYFAIR.

Figure 3.15: Playfair Cipher Tool: Matrix Mode

• In Keyword mode the Key menu has the following options.

File —

Cryptography Notes: Technology Guides 134



CHAPTER 3. INTRODUCTION TO CRYPTOGRAPHY EXPLORER

New: Clears the keyword.

Open: Opens a keyword file and loads it into the keyword.

Save As: Saves the current keyword to a keyword file.

Print: Prints the current keyword to the selected printer.

Print Preview: Prints the current keyword to the print preview display.

Edit —

Copy: Copies the keyword to the clipboard.

Paste: Pastes the keyword from the clipboard.

Tools —

Convert to Uppercase: Converts all alphabetic characters to uppercase.

Remove Whitespace: Removes all whitespace in the text, spaces, line brakes,
tabs, ....

Remove Punctuation: Removes all punctuation in the text.

• In Key Matrix mode the Key menu has the following options.

File —

New: Clears the matrix cells.

Open: Opens a key matrix file and loads it into the table.

Save As: Saves the current matrix to a key matrix file.

Print: Prints the current matrix to the selected printer.

Print Preview: Prints the current matrix to the print preview display.

Edit —

Copy: Copies the entire key grid to the clipboard.

Copy as LaTeX (tabular): Copies the entire key grid to the clipboard using
the syntax for the LATEX tabular environment.

Copy as LaTeX (longtable): Copies the entire key grid to the clipboard using
the syntax for the LATEX longtable environment.

Tools —

Convert to Uppercase: Converts all matrix cells to uppercase.

Check Playfair Matrix: Checks the validity of the current table and displays
a message of either valid or invalid.

• The Input/Output Correspondence grid has a toolbar with the following options.

File —

Save As: Saves the current Input/Output Correspondence grid to a text file.

Print: Prints the current Input/Output Correspondence grid to the selected
printer.

Cryptography Notes: Technology Guides 135



CHAPTER 3. INTRODUCTION TO CRYPTOGRAPHY EXPLORER

Print Preview: Prints the current Input/Output Correspondence grid to the
print preview display.

Edit —

Copy: Copies the entire Input/Output Correspondence grid to the clipboard.

Copy as LaTeX (tabular): Copies the entire Input/Output Correspondence
grid to the clipboard using the syntax for the LATEX tabular environment.

Copy as LaTeX (longtable): Copies the entire Input/Output Correspondence
grid to the clipboard using the syntax for the LATEX longtable environment.

• The Encrypt and Decrypt buttons work as follows.

– The Encrypt and Decrypt buttons will, of course, apply the Playfair cipher to the
input and place the result in the output.

∗ Encryption will apply the forward method for the cipher, that is, right and
down for same row and column of character pairs.

∗ Decryption will apply the backward method for the cipher, that is, left and
up for same row and column of character pairs.

Notes

• There are several slightly different ways to implement this cipher. The one we use does
the following.

– We equate I and J in order to get 26 letters down to 25, so the plaintext cannot
have any J’s in it.

– As with all Playfair ciphers, when the plaintext is broken into blocks of 2, there
cannot be duplicate characters.

• With the Keyword mode, the user inputs a single keyword, The program automatically
converts the keyword to uppercase, ignores and repeated characters and changes any
J’s to I’s. These conversions are done internally, so the user does not see any change
in the keyword. The altered keyword is then used to fill out the Playfair 5 X 5 grid
by starting on row one left to right and moving to subsequent rows when necessary.
When the characters of the keyword have been used, the remaining cells in the grid are
filled in with the missing letters going in alphabetical order. For example, the keyword
PLAYFAIR would be converted to PLAYFIR and then P L A Y F would be in the
first row and I R would be in the first two cells in the second row.

3.3.9 ADFGX

The ADFGX Cipher was invented by Colonel Fritz Nebel in March of 1918, in June of that
year the letter V was introduced, making it the ADFGVX Cipher. The ADFGVX cipher

Cryptography Notes: Technology Guides 136



CHAPTER 3. INTRODUCTION TO CRYPTOGRAPHY EXPLORER

was a field cipher that was used by the German Army on the Western Front throughout
World War I.

The ADFGX and ADFGVX ciphers got their name from the only five or six letters that
show up in the ciphertext: A, D, F, G and X or A, D, F, G, V and X. The reason these
particular letters were chosen was because they sound very different from each other when
transmitted by Morse code. This was done to reduce the operator error in the transmission
of the message, and was probably the first time that coding theory ideas were used in
cryptography.

Figure 3.16: ADFGX Cipher Tool

How to Use the Tool

To Encrypt —

1. Input the plaintext message into the Input box. Make sure that the characters
are all uppercase and all J’s are converted to I’s. Note that the Input toolbar has
options in the Tools menu for these standard conversions.

2. Input a Keyword. The keyword must consist of all uppercase letters with no
duplications.

Cryptography Notes: Technology Guides 137



CHAPTER 3. INTRODUCTION TO CRYPTOGRAPHY EXPLORER

3. Input a Key Matrix. The key matrix must consist of all uppercase letters excluding
J, as with the playfair cipher we use the version of the ADFGX which equates I
and J.

4. Click the Encrypt button. At this point the Output box will display the ciphertext
message and the Process Outline box will show the encryption process step by
step.

To Decrypt —

1. Input the ciphertext message into the Input box.

2. Input a Keyword. The keyword must consist of all uppercase letters with no
duplications.

3. Input a Key Matrix. The key matrix must consist of all uppercase letters excluding
J, as with the playfair cipher we use the version of the ADFGX which equates I
and J.

4. Click the Decrypt button. At this point the Output box will display the plaintext
message and the Process Outline box will show the decryption process step by
step.

Options

• The Key menu has the following options.

File —

New: Clears the keyword and matrix.

Open: Opens a key file and loads it into the keyword and matrix.

Save As: Saves the current key to a file.

Print: Prints the current key to the selected printer.

Print Preview: Prints the current key to the print preview display.

Edit —

Copy Keyword: Copies the keyword to the clipboard.

Copy Key Matrix: Copies the key matrix to the clipboard.

Copy Key Matrix As LaTeX: Copies the key matrix to the clipboard using
LATEX syntax.

Paste Keyword: Pastes the keyword from the clipboard.

Paste Key Matrix: Pastes the key matrix from the clipboard. Specifically, the
contents of the clipboard are treated as a tab-delimited grid and the paste
begins in the upper left corner of the table.

Tools —

Convert to Uppercase: Converts all alphabetic characters to uppercase.

Cryptography Notes: Technology Guides 138



CHAPTER 3. INTRODUCTION TO CRYPTOGRAPHY EXPLORER

Remove Whitespace: Removes all whitespace in the text, spaces, line brakes,
tabs, ....

Remove Punctuation: Removes all punctuation in the text.

Check Key: Checks if the keyword and matrix are valid.

• The Process Outline has a toolbar with the following options.

File —

Save As: Saves the current Process Outline to a text file.

Print: Prints the current Process Outline to the selected printer.

Print Preview: Prints the current Process Outline to the print preview display.

Edit —

Copy: Copies the selected portion of the entire Process Outline to the clipboard.

Copy All: Copies the entire Process Outline to the clipboard.

• The Encrypt and Decrypt buttons work as follows.

– The Encrypt and Decrypt buttons will, of course, apply the ADFGX cipher to
the input and place the result in the output.

∗ Encryption will apply the forward method for the cipher.

∗ Decryption will apply the backward method for the cipher.

Notes

• We equate I and J in order to get 26 letters down to 25, so the plaintext cannot have
any J’s in it.

3.3.10 ADFGVX

The ADFGX Cipher was invented by Colonel Fritz Nebel in March of 1918, in June of that
year the letter V was introduced, making it the ADFGVX Cipher. The ADFGVX cipher
was a field cipher that was used by the German Army on the Western Front throughout
World War I.

The ADFGX and ADFGVX ciphers got their name from the only five or six letters that
show up in the ciphertext: A, D, F, G and X or A, D, F, G, V and X. The reason these
particular letters were chosen was because they sound very different from each other when
transmitted by Morse code. This was done to reduce the operator error in the transmission
of the message, and was probably the first time that coding theory ideas were used in
cryptography.

Cryptography Notes: Technology Guides 139



CHAPTER 3. INTRODUCTION TO CRYPTOGRAPHY EXPLORER

Figure 3.17: ADFGVX Cipher Tool

How to Use the Tool

To Encrypt —

1. Input the plaintext message into the Input box. Make sure that the characters
are all uppercase. Note that the Input toolbar has an option in the Tools menu
for this conversion.

2. Input a Keyword. The keyword must consist of all uppercase letters with no
duplications.

3. Input a Key Matrix. The key matrix must consist of all uppercase letters and
single digits.

4. Click the Encrypt button. At this point the Output box will display the ciphertext
message and the Process Outline box will show the encryption process step by
step.

To Decrypt —

1. Input the ciphertext message into the Input box.

2. Input a Keyword. The keyword must consist of all uppercase letters with no
duplications.

Cryptography Notes: Technology Guides 140



CHAPTER 3. INTRODUCTION TO CRYPTOGRAPHY EXPLORER

3. Input a Key Matrix. The key matrix must consist of all uppercase letters and
single digits.

4. Click the Decrypt button. At this point the Output box will display the plaintext
message and the Process Outline box will show the decryption process step by
step.

Options

• The Key menu has the following options.

File —

New: Clears the keyword and matrix.

Open: Opens a key file and loads it into the keyword and matrix.

Save As: Saves the current key to a file.

Print: Prints the current key to the selected printer.

Print Preview: Prints the current key to the print preview display.

Edit —

Copy Keyword: Copies the keyword to the clipboard.

Copy Key Matrix: Copies the key matrix to the clipboard.

Copy Key Matrix As LaTeX: Copies the key matrix to the clipboard using
LaTeX syntax.

Paste Keyword: Pastes the keyword from the clipboard.

Paste Key Matrix: Pastes the key matrix from the clipboard. Specifically, the
contents of the clipboard are treated as a tab-delimited grid and the paste
begins in the upper left corner of the table.

Tools —

Convert to Uppercase: Converts all alphabetic characters to uppercase.

Remove Whitespace: Removes all whitespace in the text, spaces, line brakes,
tabs, ....

Remove Punctuation: Removes all punctuation in the text.

Check Key: Checks if the keyword and matrix are valid.

• The Process Outline has a toolbar with the following options.

File —

Save As: Saves the current Process Outline to a text file.

Print: Prints the current Process Outline to the selected printer.

Print Preview: Prints the current Process Outline to the print preview display.

Edit —

Copy: Copies the selected portion of the entire Process Outline to the clipboard.

Cryptography Notes: Technology Guides 141



CHAPTER 3. INTRODUCTION TO CRYPTOGRAPHY EXPLORER

Copy All: Copies the entire Process Outline to the clipboard.

• The Encrypt and Decrypt buttons work as follows.

– The Encrypt and Decrypt buttons will, of course, apply the ADFGX cipher to
the input and place the result in the output.

∗ Encryption will apply the forward method for the cipher.

∗ Decryption will apply the backward method for the cipher.

3.3.11 Linear Feedback Shift Register (LFSR)

The LFSR Cipher is a binary stream cipher.

Figure 3.18: Linear Feedback Shift Register Cipher Tool

How to Use the Tool

To Encrypt or Decrypt —

1. Input the binary plaintext message into the Input box. The input must be a
binary (0 and 1) string. Note that the Input toolbar has options in the Tools
menu for conversions from text to numbers, including binary representations of
ASCII character values.

2. Input a Key Seed. The key seed must be a binary string.

3. Input a Key Generator. The key generator must be a binary string.

4. Click the Encrypt/Decrypt button.

Cryptography Notes: Technology Guides 142



CHAPTER 3. INTRODUCTION TO CRYPTOGRAPHY EXPLORER

Options

• The Key menu has the following options.

File —

New: Clears the key inputs.

Open: Opens a key file and loads it into the key inputs.

Save As: Saves the current key to a file.

Print: Prints the current key to the selected printer.

Print Preview: Prints the current key to the print preview display.

Edit —

Copy: Copies the key to the clipboard.

Tools —

Remove Whitespace: Removes all whitespace in the text, spaces, line brakes,
tabs, ....

Remove Punctuation: Removes all punctuation in the text.

• The Encrypt/Decrypt button applies the LFSR algorithm to the input and key and
places the result in the output.

Notes

• The LFSR cipher simply takes the binary plaintext message and XOR’s each bit of the
plaintext with the corresponding bit of the key. So if the message is 100101 and the
key is 110111 then the ciphertext is 010010.

• The key is produced by a seed and a generator string. The seed is taken verbatim as
the beginning of the key. After the seed is exhausted, the generator string will generate
more bits to the key until the length of the key matches the length of the length of the
plaintext message. The method of generation is as follows. The key generator (which
is given in binary form) is placed on the right of the key so that the last bit of the key
is in the same position as the last bit of the generator. If the generator has a 1 in a
position then the value of key in that position is taken. All taken bits are then added
modulo 2 and the result is the next bit in the key. This process is then continued for
the next bit of the key and so on. For example, if the seed if 110111 and the generator
is 101 then the key will be 11011101001...

3.3.12 Hill

The Hill Cipher was developed by Lester Hill in 1929. Lester Hill was a professor at Hunter
College in New York City and first published this method in the American Mathematical
Monthly with his article Cryptography in an Algebraic Alphabet. Although it seems that

Cryptography Notes: Technology Guides 143



CHAPTER 3. INTRODUCTION TO CRYPTOGRAPHY EXPLORER

this method was not used much in practice, it marked the transition cryptography made
from a mainly linguistic practice to a mathematical discipline. Prior to World War II most
cryptographic and cryptanalysis methods centered around replacing characters in a message
with different characters (using one or more alphabets) and mixing up or rearranging the
message. Hence the code breakers were primarily people who were highly trained in linguis-
tics, could speak several languages, and were good puzzle solvers. With the invention of the
Enigma machine, used by the German’s in World War II, cryptanalysis of these ciphertexts
required advanced mathematics and an enormous amount of computation, far beyond that
of a single person or group of people.

Figure 3.19: Hill Cipher Tool

How to Use the Tool

To Encrypt —

1. Input the plaintext message into the Input box. Make sure that the characters
are from the same character set as the one selected. Note that you can change
the character set using the selection box below the Input box. There are also
some quick conversion tools in the Tools menu. Note that since the Hill cipher is
a block cipher with block size the size of the key matrix, the number of characters
in the input must be a multiple of the number of rows (and hence columns) of

Cryptography Notes: Technology Guides 144



CHAPTER 3. INTRODUCTION TO CRYPTOGRAPHY EXPLORER

the matrix. In some cases you may need to pad the input with extra characters
to apply the cipher.

2. Input a Key Matrix. The key matrix must consist of numbers greater than or
equal to 0 and less than the size of your character set, since the Hill cipher will
do all calculations modulo the size of the character set.

3. Click the Encrypt button. At this point the Output box will display the ciphertext
message.

To Decrypt —

1. Input the ciphertext message into the Input box. Make sure that the characters
are from the same character set as the one selected. Note that you can change
the character set using the selection box below the Input box. There are also
some quick conversion tools in the Tools menu. Note that since the Hill cipher is
a block cipher with block size the size of the key matrix, the number of characters
in the input must be a multiple of the number of rows (and hence columns) of
the matrix. In some cases you may need to pad the input with extra characters
to apply the cipher.

2. Input a Key Matrix. The key matrix must be the inverse, modulo the size of the
character set, of the encryption matrix. The tool will not automatically invert
the matrix that is displayed, you need to use the Modular Matrix Calculator to
find the inverse.

3. Click the Encrypt button. At this point the Output box will display the plaintext
message.

Options

• In the lower left quarter of the window is the key matrix that will be used for encoding
and a selection for the character set to use for the cipher. The character sets are as
follows:

Uppercase Alphabet: A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

User Defined Language: This will open an Open dialog box that will allow you to
select a user defined language. Information on creating a user defined language
can be found in the section on the User Defined Language Creator.

• The Mode is the way that the message vectors are multiplied by the encryption matrix.
Classical mode uses the same process as Lester Hill used back in 1929. It translates
the plaintext message to row vectors v, and then multiplies the vector on the right by
the encryption matrix M , that is, it computes vM = w. The vector w is then trans-
lated back to the character set as the ciphertext. Modern mode follows the current
linear algebra practice of treating a linear transformation more as a function, basically
the modern mode simply reverses the multiplication. In modern mode the plaintext

Cryptography Notes: Technology Guides 145



CHAPTER 3. INTRODUCTION TO CRYPTOGRAPHY EXPLORER

message is converted into column vectors v and then multiplied on the left by the en-
cryption matrix M , that is, Mv = w. Since matrix multiplication is not commutative
these methods will produce different ciphertexts on the same message with the same
key matrix.

• The Key Matrix menu has the following options. Also, to change the size of the matrix,
there is a size selection to the right of the menu.

File —

New: Clears the entries of the key matrix.

Open: Opens a key file and loads it into the matrix.

Save As: Saves the current key to a file.

Print: Prints the current key to the selected printer.

Print Preview: Prints the current key to the print preview display.

Edit —

Copy: Copies the key matrix to the clipboard.

Copy as LaTeX (tabular): Copies the key matrix to the clipboard using La-
TeX syntax and the tabular environment.

Copy as LaTeX (array): Copies the key matrix to the clipboard using LaTeX
syntax and the array environment.

Copy to Mathematica Syntax: Copies the key matrix to the clipboard using
Mathematica syntax.

Copy to Maxima Syntax: Copies the key matrix to the clipboard using Max-
ima syntax.

Tools —

Create Random Matrix: Creates a random matrix using entries in the range
of 0 to one less then the size of the character set.

Check for Inverse Matrix: Checks if the matrix has an inverse modulo the
size of the character set.

• The Encrypt button will apply the Hill cipher to the input. In the encryption process,
the program will

1. Block the input into blocks of size n (where the key matrix is n X n).

2. Translate each of these blocks into a row vector v. The correspondence of letters
to numbers is done by the position of the letter in the character set. So if the
character set is the uppercase alphabet (A B C D E F G H I J K L M N O P Q R
S T U V W X Y Z) then A = 0, B = 1, C = 2, and so on. If, in the other hand,
the character set is rtdfi then r = 0, t = 1, d = 2, and so on and the calculations
are done modulo 5 as opposed to modulo 26 in the case of the uppercase alphabet.

3. Apply the matrix on the right, that is w = vM.

4. Translate w back to letters for the output.

Cryptography Notes: Technology Guides 146



CHAPTER 3. INTRODUCTION TO CRYPTOGRAPHY EXPLORER

Notes

• With the Hill cipher, decryption is the same as encryption except that you use the
inverse of the encryption matrix (modulo n).

• The encryption matrix need not be invertible to apply the encryption.

• To decrypt a message with the Hill cipher key matrix that is needed is the inverse
(modulo the size of the character set) of the encryption matrix. This tool will not find
the inverse of the encryption matrix automatically, you will need to use the modular
matrix calculator to calculate the inverse.

3.3.13 Enigma

The Enigma Machine was Germany’s encryption device throughout WWII. This simulator
is designed to simulate four versions of the Enigma Machine, the Enigma I, the M3 Army,
the M3 Naval and the M4 Naval.

Figure 3.20: Enigma Machine Simulation Tool

How to Use the Tool

To Encrypt and Decrypt —

1. Input the message into the Input box. Make sure that the characters are all
uppercase letters. There are some quick conversion tools in the Tools menu.

Cryptography Notes: Technology Guides 147



CHAPTER 3. INTRODUCTION TO CRYPTOGRAPHY EXPLORER

2. Select the type of Enigma machine you want to use, the Enigma I, the M3 Army,
the M3 Naval or the M4 Naval. When the selection of the machine is made the
Rotor and Reflector options will change to match that type of machine.

3. Set the plug board options. Each cable in the plug board is represented by a drop-
down list of the form A <=> B, A <=> C, and so on. So a setting of D <=> M
would represent a patch between the letters D and M. Note that there are more
cables available in this simulator then there were in the original machines. Also,
none of the cables can have duplicate listings, so selecting A <=> B for one cable
and A <=> C for another will produce an error, as will having cables A <=> B
and B <=> C.

4. Set the rotors and reflector settings. The rotor and reflector settings are also done
by drop-down lists. The top selection is the rotor or reflector to be used and the
bottom selection is the character setting of the rotor. On some of the Enigma
models the rotors were actually labeled with numbers 1-26 instead of letters, but
the usual letter number correspondence applies. The program will not allow a
duplication of rotors in the machine, hence the rotors must all be different.

5. Click the Encrypt/Decrypt button. At this point the Output box will display the
ciphertext message.

Notes

• The rotor and reflector wirings are as follows,

– Rotor I: Substitution: EKMFLGDQVZNTOWYHXUSPAIBRCJ with Notch at
Q.

– Rotor II: Substitution: AJDKSIRUXBLHWTMCQGZNPYFVOE with Notch at
E.

– Rotor III: Substitution: BDFHJLCPRTXVZNYEIWGAKMUSQO with Notch at
V.

– Rotor IV: Substitution: ESOVPZJAYQUIRHXLNFTGKDCMWB with Notch at
J.

– Rotor V: Substitution: VZBRGITYUPSDNHLXAWMJQOFECK with Notch at
Z.

– Rotor VI: Substitution: JPGVOUMFYQBENHZRDKASXLICTW with Notches
at M and Z.

– Rotor VII: Substitution: NZJHGRCXMYSWBOUFAIVLPEKQDT with Notches
at M and Z.

– Rotor VIII: Substitution: FKQHTLXOCBJSPDZRAMEWNIUYGV with Notches
at M and Z.

– Rotor Beta: Substitution: LEYJVCNIXWPBQMDRTAKZGFUHOS.

Cryptography Notes: Technology Guides 148



CHAPTER 3. INTRODUCTION TO CRYPTOGRAPHY EXPLORER

– Rotor Gamma: Substitution: FSOKANUERHMBTIYCWLQPZXVGJD.

– Reflector A: Substitution: EJMZALYXVBWFCRQUONTSPIKHGD.

– Reflector B: Substitution: YRUHQSLDPXNGOKMIEBFZCWVJAT.

– Reflector B Thin: Substitution: ENKQAUYWJICOPBLMDXZVFTHRGS.

– Reflector C Thin: Substitution: RDOBJNTKVEHMLFCWZAXGYIPSUQ.

3.3.14 RSA

The RSA algorithm was developed by three professors at MIT in 1977, Ron Rivest, Adi
Shamir, and Leonard Adlemen, their initials give the algorithm its name. This was one
of the first algorithms to implement the concept of public-key cryptography. The actual
concept of public-key cryptography was discovered by Whitfield Diffe and Martin Hellman
just one year earlier.

As a historical note, Rivest, Shamir and Adlemen were not the first mathematicians to
discover this technique. In 1973, Clifford Cocks, a British mathematician and cryptographer
at the Government Communications Headquarters (GCHQ), had developed an equivalent
system.

Figure 3.21: RSA Cipher Tool

How to Use the Tool

To Encrypt —

Cryptography Notes: Technology Guides 149



CHAPTER 3. INTRODUCTION TO CRYPTOGRAPHY EXPLORER

1. Input the plaintext message into the Input box. This must be in the form of a
single number or a set of numbers separated by spaces which are less than the
modulus n = pq. If a number in the list is larger than n, it will first be reduced
modulo n, hence most likely losing the information it held. There are numerous
options in the Tools menu for converting text to numbers.

2. Input the public key of n and e. Alternatively, if you are creating the public and
private keys for the system you can input the primes, p and q and the encryption
exponent e, then select the option from the Tools menu for the key to generate d
and n. The input boxes for p and q have options for selecting the next probable
prime greater than the one input.

3. Click the Encrypt button. At this point the Output box will display the ciphertext
message, in this case the number c = me (mod n). If several numbers were input
then there will be one number output for each of the inputs.

To Decrypt —

1. Input the ciphertext message into the Input box. This must be in the form of a
single number or a set of numbers separated by spaces which are less than the
modulus n = pq. If a number in the list is larger than n, it will first be reduced
modulo n, hence most likely losing the information it held.

2. Input the private key of n and d. Alternatively, if you know p and q you can input
these and the encryption exponent e, then select the option from the Tools menu
for the key to generate d and n.

3. Click the Decrypt button. At this point the Output box will display the plaintext
message, in this case the number m = cd (mod n). If several numbers were input
then there will be one number output for each of the inputs.

Options

• The Key menu has the following options.

File —

New: Clears the entries of the key.

Open: Opens a key file and loads it into the entries.

Save As: Saves the current key to a file.

Print: Prints the current key to the selected printer.

Print Preview: Prints the current key to the print preview display.

Edit —

Copy: Copies the key to the clipboard.

Tools —

Cryptography Notes: Technology Guides 150



CHAPTER 3. INTRODUCTION TO CRYPTOGRAPHY EXPLORER

Generate n and d from p, q and e: Given p, q and e the program will gener-
ate n and d. If p, q, and e do not have the necessary properties the program
will produce the appropriate error message.

• The Encrypt and Decrypt buttons will apply the RSA algorithm to the input using
the current key. Encrypt will use e as the exponent and Decrypt will use d as the
exponent.

3.3.15 ElGamal

The ElGamal public key algorithm was developed by Taher ElGamal in 1985 and is a system
whose security relies on the difficulty of computing discrete logarithms. The encryption and
decryption process is as follows. The public portion of the key is a triple (p, a, b) where p
is a prime, a is a primitive root of p and b = ad (mod p), where d is a private decryption
exponent.

To encrypt a message m, where m is a number between 0 and p−1, a private exponent e
is selected and the two values r and t are calculated, r = ae (mod p) and t = be ·m (mod p).
The pair (r, t) is the ciphertext.

To decrypt a message, one calculates tr−e = m (mod p).

Figure 3.22: ElGamal Cipher Tool

How to Use the Tool

To Encrypt —

Cryptography Notes: Technology Guides 151



CHAPTER 3. INTRODUCTION TO CRYPTOGRAPHY EXPLORER

1. Input the plaintext message into the Input box. This must be in the form of a
single number which is less than the modulus p. If a number in the list is larger
than p, it will first be reduced modulo p, hence most likely losing the information
it held. There are numerous options in the Tools menu for converting text to
numbers.

2. Input the public key of p, a and b. Also input an encryption exponent e.

If you are creating the public and private keys for the system you can input the
prime p, the decryption exponent d, and a primitive root a of p, then select the
option from the Tools menu for the key to generate b. The input box for p has
an option for selecting the next probable prime greater then the one input. The
input box for a has the options to generate a primitive root and to check if the
input number is a primitive root.

3. Click the Encrypt button. At this point the Output box will display the ciphertext
message, which is the pair (r, t). The pair is output without parentheses but with
a comma separating r and t.

To Decrypt —

1. Input the ciphertext message into the Input box, this must be of the same form
as the encryption output, that is, two numbers separated by a comma. If either
number in the list is larger than p, it will first be reduced modulo p, hence most
likely losing the information it held.

2. Input the private decryption exponent d.

3. Click the Decrypt button. At this point the Output box will display the plaintext
message.

Options

• The Key menu has the following options.

File —

New: Clears the entries of the key.

Open: Opens a key file and loads it into the entries.

Save As: Saves the current key to a file.

Print: Prints the current key to the selected printer.

Print Preview: Prints the current key to the print preview display.

Edit —

Copy: Copies the key to the clipboard.

Tools —

Generate b from a, d and p: Given a, d and p the program will generate b.

Cryptography Notes: Technology Guides 152



CHAPTER 3. INTRODUCTION TO CRYPTOGRAPHY EXPLORER

Notes

• Both of the options to calculate a primitive root and to verify a primitive root rely on
factoring p− 1. This can be a lengthy process for some large primes p.

3.4 Text and Stream Analysis

3.4.1 Frequency Analysis

The Frequency Analysis window will analyze text for character, digram, trigram, or n-gram
frequencies. There is also an option to interlace or not interlace the blocks of characters.

Figure 3.23: Frequency Analysis Tool

How to Use the Tool

1. Input the ciphertext into the Input box.

2. Select the analysis option, either single characters, digrams, trigrans, or n-grams.

3. Select the interlacing option of either interlaced or not interlaced.

Cryptography Notes: Technology Guides 153



CHAPTER 3. INTRODUCTION TO CRYPTOGRAPHY EXPLORER

4. Click on the Report Frequencies button. At this point the frequencies and relative
frequencies will be displayed in the report table and the same data will be displayed
in the report bar chart.

Options

• The frequency reporting options are as follows. The reporting is case sensitive, so A
and a are seen as two distinct characters.

Single: Single will report the frequencies and relative frequencies of each character in
the input.

Digrams: This will report all consecutive character pairs in the input.

Trigrams: This will report all consecutive character triples in the input.

n-Grams: This will report all consecutive blocks of n characters in the input. The
user can select between 4 and 10 characters per block.

• The interlacing options are as follows,

Interlaced: This will report all n-gram frequencies taking all consecutive blocks of n
characters. For example, with digrams the input of QWERTY would count QW,
WE, ER, RT, and TY.

Non-Interlaced: This will report all n-gram frequencies taking consecutive blocks of
n characters with no overlap. For example, with digrams the input of QWERTY
would count QW, ER, and TY.

• The Report Table has a toolbar with the following options.

File —

Save As: Saves the current report table to a text file.

Print: Prints the current report table to the selected printer.

Print Preview: Prints the current report table to the print preview display.

Edit —

Copy: Copies the entire report table to the clipboard.

Copy as LaTeX (tabular): Copies the entire report table to the clipboard us-
ing the syntax for the LaTeX tabular environment.

Copy as LaTeX (longtable): Copies the entire report table to the clipboard
using the syntax for the LaTeX longtable environment.

Tools —

Sort by Character: Sorts the table (and bar chart) using the character column
of the table and alphabetical order.

Cryptography Notes: Technology Guides 154



CHAPTER 3. INTRODUCTION TO CRYPTOGRAPHY EXPLORER

Sort Ascending by Frequency: Sorts the table (and bar chart), from lowest
to highest, using the frequency column of the table.

Sort Descending by Frequency: Sorts the table (and bar chart), from highest
to lowest, using the frequency column of the table.

• The Report Bar Chart has a toolbar with the following options.

File —

Save As: Saves the current chart to a png file.

Print: Prints the current chart to the selected printer.

Print Preview: Prints the current chart to the print preview display.

Edit —

Copy: Copies the chart to the clipboard.

Tools —

Toggle Frequency and Relative Frequency: Toggles the display between re-
porting frequencies and relative frequencies.

Plot All Data: Plots all of the data in the chart, that is, each frequency is
plotted as a single bar.

Plot Range of Data: Plots a selected range of the data. When the user selects
this option a small dialog box will appear asking for the number of data items
to plot. When the user selects the number of items the graph is changed to
have only that number of bars showing. Also there will appear a slider tool
at the bottom of the chart that will allow the user to slide the graph left and
right, in order to see the entire set of data.

3.4.2 Hill Climb Analysis

The Hill Climb Analysis window will apply the hill climbing algorithm for substitution
ciphers to the input text. When the analysis is finished, the best guess to the substitution
cipher key will be displayed in the report grid.

How to Use the Tool

1. Input the ciphertext into the Input box.

2. Select the analysis option, either using the trigram, quadgram or quintgram data files.

3. Click on the Analyze button. The process may take several seconds to complete,
depending on the size of the ciphertext, which data set you choose to use and the
number of passes that are made in the analysis.

Cryptography Notes: Technology Guides 155



CHAPTER 3. INTRODUCTION TO CRYPTOGRAPHY EXPLORER

Figure 3.24: Hill Climb Analysis Tool

Options

• The data set options are as follows.

Trigrams: This is a data set of 17,556 trigrams and frequencies taken from 4,274,127,909
English text trigrams.

Quadgrams: This is a data set of 389,373 quadgrams and frequencies taken from
4,224,127,912 English text quadgrams.

Quintgrams: This is a data set of 4,354,914 quintgrams and frequencies taken from
4,174,127,916 English text quintgrams.

• The Report Table has a toolbar with the following options.

File —

Save As: Saves the current report table to a text file.

Print: Prints the current report table to the selected printer.

Print Preview: Prints the current report table to the print preview display.

Edit —

Copy: Copies the entire report table to the clipboard.

Copy as LaTeX (tabular): Copies the entire report table to the clipboard us-
ing the syntax for the LaTeX tabular environment.

Copy as LaTeX (longtable): Copies the entire report table to the clipboard
using the syntax for the LaTeX longtable environment.

Cryptography Notes: Technology Guides 156



CHAPTER 3. INTRODUCTION TO CRYPTOGRAPHY EXPLORER

Notes

• There are many ways to implement a hill climbing algorithm on a substitution cipher.
This implementation uses the following algorithm.

1. The ciphertext is first frequency analyzed using single characters and assigned a
preliminary key by frequency. The most frequent letter assigned to E, the next
assigned to T, then A, then O, and so on.

2. At this point the hill climbing step starts. The fitness measure of the single
character frequency substitution is calculated.

3. The program will then begin transposing the substitution key entries, starting
with A and B, then A and C, down to A and Z, then B and C, down to B and Z, and
so on until Y and Z. After each transposition is done, the ciphertext is converted
to a possible plaintext and the fitness measure is calculated on that possible
plaintext. If this measure is larger than the previous one, the new substitution
key is used and if not, the transposed characters are reassigned to their original
positions.

4. Once all of the possible transpositions are done, we consider that a single pass.
If the fitness measure after a pass is larger than the fitness measure before the
pass the program will make another pass. If the fitness measure does not increase
during a pass, the program will consider the current substitution key the best
guess and display that key.

The fitness measure is calculated by taking the sum of the logarithms (base 10) of
the probabilities of each of the trigrams, quadgrams, or quintgrams in the converted
ciphertext.

• Depending on your ciphertext, using a different data set may produce better results. In
some cases, using trigrams may get closer to the substitution key than using quadgrams
or quintgrams.

• Since the hill climbing algorithm may take several passes, this process might, on aver-
age, take a few seconds to complete. In most cases, unless you have an extraordinarily
long ciphertext to analyze, the process will only take a couple seconds. Nonetheless,
we have placed the algorithm in a worker thread of execution so that the program is
not locked out during the process. At the bottom of the window is a status bar that
displays the current progress of the algorithm. The display shows the current pass, the
percentage of that pass that is complete, the fitness measure of the current best key
being examined, and on the far right is the elapsed time of the algorithm.

3.4.3 Kasiski’s Method

Kasiski’s Method, which is also known as Kasiski’s Test or Kasiski examination was devel-
oped by Friedrich Kasiski[2] in 1863 but it seems to have been independently discovered by
Charles Babbage[1] as early as 1846.

Cryptography Notes: Technology Guides 157



CHAPTER 3. INTRODUCTION TO CRYPTOGRAPHY EXPLORER

The Kasiski’s Method window will report the divisor counts of the distances between
equal substrings of a given length of the input. This is one of the possible tools for deter-
mining the length of a Vigenère cipher keyword.

Figure 3.25: Kasiski’s Method Analysis Tool

How to Use the Tool

1. Input the ciphertext into the Input box.

2. Select the minimum and maximum substring length to be tested.

3. Select the maximum divisor to be tested for each substring occurrence difference.

4. Click on the Calculate Matches button. At this point the number of divisors of the
differences between the substring matches will be displayed in the report bar chart.

Options

• The Report Bar Chart has a toolbar with the following options.

File —

Save As: Saves the current chart to a png file.

Print: Prints the current chart to the selected printer.

Print Preview: Prints the current chart to the print preview display.

Edit —

Copy: Copies the chart to the clipboard.

Cryptography Notes: Technology Guides 158



CHAPTER 3. INTRODUCTION TO CRYPTOGRAPHY EXPLORER

3.4.4 Coincidence Analysis

The Coincidence Analysis window will report the number of matches of characters in the
same position between the original text and shifts of that text. This is one of the possible
tools for determining the length of a Vigenère cipher keyword.

Figure 3.26: Coincidence Analysis Tool

How to Use the Tool

1. Input the ciphertext into the Input box.

2. Select the maximum shift.

3. Click on the Calculate Matches button. At this point the number of matches between
shifts of 1 and the maximum will be displayed in the report bar chart.

Options

• The Report Bar Chart has a toolbar with the following options.

File —

Save As: Saves the current chart to a png file.

Print: Prints the current chart to the selected printer.

Print Preview: Prints the current chart to the print preview display.

Cryptography Notes: Technology Guides 159



CHAPTER 3. INTRODUCTION TO CRYPTOGRAPHY EXPLORER

Edit —

Copy: Copies the chart to the clipboard.

3.4.5 Dot Product Analysis

The Dot Product Analysis window will analyze dot products between the relative frequency
counts of the given text and shifts of the relative frequencies of characters in the selected
language. If the user selects the uppercase alphabet as the character set the program will use
the relative frequencies of characters in the English language and if the user selects a user
defined language the relative frequencies of that language will be used. This is one numeric
technique for determining if a shift cipher was used and determining the shift.

Figure 3.27: Dot Product Analysis Tool

How to Use the Tool

1. Input the ciphertext into the Input box.

2. Select the character set to use.

3. Click on the Calculate Dot Products button. At this point the dot products of all
possible shifts will be displayed in the report table and the same data will be displayed
in the report bar chart.

Cryptography Notes: Technology Guides 160



CHAPTER 3. INTRODUCTION TO CRYPTOGRAPHY EXPLORER

Options

• The character sets are as follows:

Uppercase Alphabet: A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

User Defined Language: This will open an Open dialog box that will allow you to
select a user defined language. Information on creating a user defined language
can be found in the section on the User Defined Language Creator.

• The Report Table has a toolbar with the following options.

File —

Save As: Saves the current report table to a text file.

Print: Prints the current report table to the selected printer.

Print Preview: Prints the current report table to the print preview display.

Edit —

Copy: Copies the entire report table to the clipboard.

Copy as LaTeX (tabular): Copies the entire report table to the clipboard us-
ing the syntax for the LaTeX tabular environment.

Copy as LaTeX (longtable): Copies the entire report table to the clipboard
using the syntax for the LaTeX longtable environment.

• The Report Bar Chart has a toolbar with the following options.

File —

Save As: Saves the current chart to a png file.

Print: Prints the current chart to the selected printer.

Print Preview: Prints the current chart to the print preview display.

Edit —

Copy: Copies the chart to the clipboard.

3.4.6 Substring Compare

The Substring Compare window finds matches between two strings and reports the positions
of those matches. This is primarily a tool for cracking ADFGX and ADFGVX ciphers.

How to Use the Tool

1. Input the ciphertext of the two encryptions into the two Input boxes.

2. Select the Substring Size to use.

3. Click on the Compare button at the bottom of the window. At this point all matches
of substrings of the given size will appear in the Matches output box.

Cryptography Notes: Technology Guides 161



CHAPTER 3. INTRODUCTION TO CRYPTOGRAPHY EXPLORER

Figure 3.28: Substring Comparison Tool

3.4.7 LFSR Cipher Analysis

The LFSR Cipher Analysis window is for determining the key recurrence relation given a
portion of the key. This tool has facilities for calculating the determinants (modulo 2) of
square matrices produced by the consecutive digit stream and for modulo 2 reduction of a
resultant matrix of specified size.

How to Use the Tool

Determining the Relation Generator Length —

1. Input the key stream into the Input box.

2. Select the maximum determinant size and the starting position in the stream.

3. Click on the Calculate Determinants button. At this point you will see a list of
determinants from 2 X 2 to n X n, where n is the maximum size that was selected.

Determining the Relation Generator String —

1. After the above analysis, input the recurrence size.

Cryptography Notes: Technology Guides 162



CHAPTER 3. INTRODUCTION TO CRYPTOGRAPHY EXPLORER

Figure 3.29: LFSR Analysis Tool: Determinants

Figure 3.30: LFSR Analysis Tool: Relation

2. Click on the Calculate Recurrence Relation button. The output will display the
determinant of the coefficient matrix as well as the reduced augmented matrix. If
the size is correct the relation bits (coefficients) will be in the augment, in order.

Cryptography Notes: Technology Guides 163



CHAPTER 3. INTRODUCTION TO CRYPTOGRAPHY EXPLORER

Notes

• The starting position is the bit where the extraction will begin. This number should be
set to skip the probable size of the key seed, since the seed may not follow the relation.

3.5 Text Tools

3.5.1 Text Extractor

The Text Extractor window is for taking some input text and extracting a substring using
a predefined pattern. The pattern is defined by extracting X characters, then skipping Y
characters starting at character Z.

Figure 3.31: Text Extractor Tool

How to Use the Tool

1. Input the text you wish to extract from into the Input box.

2. Select the extraction pattern.

3. Click on the Extract Text button. At this point the number of matches between shifts
of 1 and the maximum will be displayed in the report bar chart.

Notes

• The extraction pattern is defined by extracting X characters, then skipping Y char-
acters starting at character Z. For example, if the input string is CRYPTOGRAPHY
and the pattern is to extract 1 character, skip 3 starting at 2 then the extracted text
would be ROP.

Cryptography Notes: Technology Guides 164



CHAPTER 3. INTRODUCTION TO CRYPTOGRAPHY EXPLORER

3.5.2 Text Combiner

The Text Combiner window will take two input strings and combine them into one string.
The combining pattern is of the form, taking X characters from one string and then Y
characters from the second, and so on. If there are any characters left in one of the strings
the remainder is placed at the end.

Figure 3.32: Text Combiner Tool

How to Use the Tool

1. Input the two texts you wish to combine into the two Input boxes.

2. Select the combining pattern.

3. Click on the Combine Text button.

Notes

• The combining pattern is of the form, taking X characters from one string and then
Y characters from the second, and so on. If there are any characters left in one of the
strings the remainder is placed at the end. For example, if the input 1 is INONEEN-
CRYPTION and input 2 is THERSAALGORITHM and the pattern is two from input 1
followed by 3 from input two the result of the combine would be INTHEONRSAEEAL-
GNCORIRYTHMPTION.

Cryptography Notes: Technology Guides 165



CHAPTER 3. INTRODUCTION TO CRYPTOGRAPHY EXPLORER

3.5.3 Text Converter

The Text Converter is a simple conversion program that will convert strings into other
strings. All conversions that can be done here are also possible through the Tools menu in
each input box.

Figure 3.33: Text Converter Tool

How to Use the Tool

1. Input the text you wish to convert into the Input box.

2. Select the conversion.

3. Click on the Convert Text button.

4. If you wish to do several conversions, there is a button that will copy the text from
the output box into the input box.

Options

Many of the options for text conversion are fairly obvious but we list the options below.

Convert to UPPERCASE: Converts the input box contents to uppercase.

Convert to lowercase: Converts the input box contents to lowercase.

Remove White Space: Removes all whitespace from the input box contents. Spaces,
returns, tabs, etc. are removed.

Cryptography Notes: Technology Guides 166



CHAPTER 3. INTRODUCTION TO CRYPTOGRAPHY EXPLORER

Remove Punctuation: Removes all punctuation marks from the input box contents.

Remove Numbers: Removes all numbers from the input box contents.

Change J to I: Replaces all occurrences of J with I, in the input box contents. The case
of the j’s is not altered, so if the j is lowercase it will be replaced with a lowercase i
and if the J is uppercase it will be replaced with an uppercase I.

Remove Double Characters: This will place an X between any double characters and if
the double character is XX it will place a Z between them. So OO would be changed
to OXO and XX to XZX.

Convert Spaces to Line Breaks: Converts all spaces in the input box contents to line
breaks.

Convert Line Breaks to Spaces: Converts all line breaks in the input box contents to
spaces.

Convert White Space to Single Spaces: Converts all white space in the input box con-
tents to a single space.

Replace All...: Replaces every occurrence of the Replace target string with the With string.

Figure 3.34: Replace All Dialog

Split At...: Splits the contents of the input box at the Split At string. The split at string
is removed from the input box contents and replaced with line breaks.

Figure 3.35: Split All Dialog

Convert A-Z to 0-25: Converts the uppercase A–Z to the numbers 0–25. If the input box
contents have characters not in the A–Z range the program will generate an error.

Cryptography Notes: Technology Guides 167



CHAPTER 3. INTRODUCTION TO CRYPTOGRAPHY EXPLORER

Convert A-Z to 00-25: Converts the uppercase A–Z to the numbers 00–25, that is, it will
use two characters per letter. If the input box contents have characters not in the A–Z
range the program will generate an error.

Convert 0-25 to A-Z: Converts the numbers 0–25 to the letters A–Z. The numbers must
be separated by a space. This will work for numbers in the range of 00–25 as well, that
is, using two digits for each number.

Convert A-Z to 1-26: Converts the uppercase A–Z to the numbers 1–26. If the input box
contents have characters not in the A–Z range the program will generate an error.

Convert A-Z to 01-26: Converts the uppercase A–Z to the numbers 01–26, that is, it will
use two characters per letter. If the input box contents have characters not in the A–Z
range the program will generate an error.

Convert 1-26 to A-Z: Converts the numbers 1–26 to the letters A–Z. The numbers must
be separated by a space. This will work for numbers in the range of 01–26 as well, that
is, using two digits for each number.

Convert A-Z to 0-25 (binary): Converts the uppercase A–Z to the numbers 0–25, in
binary form, using 8 bits per letter. If the input box contents have characters not in
the A–Z range the program will generate an error.

Convert 0-25 (binary) to A-Z: Converts binary numbers in the range of 0–25 to the
letters A–Z.

Convert A-Z to 1-26 (binary): Converts the uppercase A–Z to the numbers 1–26, in
binary form, using 8 bits per letter. If the input box contents have characters not in
the A–Z range the program will generate an error.

Convert 1-26 (binary) to A-Z: Converts binary numbers in the range of 1–26 to the
letters A–Z.

Convert Text to ASCII: Converts each character of the text in the input box to the
character’s ASCII number.

Convert ASCII to Text: Converts each ASCII number in the input box to the ASCII
character. Each ASCII number must be separated by a space.

Convert Text to ASCII Stream Using 3 Decimal Numbers/Character: Converts each
character of the text in the input box to the character’s ASCII number, but uses three
digits for each number, that is, smaller numbers are padded with 0’s.

Convert ASCII Stream to Text Using 3 Decimal Numbers/Character: Converts each
three digit ASCII number in the input box to the ASCII character. Each ASCII number
must be separated by a space.

Cryptography Notes: Technology Guides 168



CHAPTER 3. INTRODUCTION TO CRYPTOGRAPHY EXPLORER

Convert Text to ASCII (binary): Converts each character of the text in the input box
to the character’s ASCII number, in binary, using 8 bits per number.

Convert ASCII (binary) to Text: Converts each 8-bit binary number to its respective
ASCII character. The binary numbers must be separated by a space.

Convert Decimal to Binary: Converts a decimal number to binary.

Convert Binary to Decimal: Converts a binary number to a decimal.

Convert Decimal to Octal: Converts a decimal number to octal.

Convert Octal to Decimal: Converts an octal number to decimal.

Convert Decimal to Hexadecimal: Converts a decimal number to hexadecimal.

Convert Hexadecimal to Decimal: Converts a hexadecimal number to decimal.

Convert Binary to Octal: Converts a binary number to octal.

Convert Octal to Binary: Converts an octal number to binary.

Convert Binary to Hexadecimal: Converts a binary number to hexadecimal.

Convert Hexadecimal to Binary: Converts a hexadecimal number to binary.

Change Numeric Base...: This will open up a dialog box that allows the user to select
an old base and a new base, the old base represents the base of the current number
and the new base is the converted base. When the old base is larger than 10, the input
can have the letters A, B, C, D, E, and F to represent “digits” of 10, 11, 12, 13, 14,
and 15 respectively.

Figure 3.36: Base Change Dialog

Convert Text to Morse Code: Converts the letters A–Z to Morse Code. The Morse
Code representation is uses - and ..

Convert Morse Code to Text: Converts the Morse Code represented as - and . to the
letters A–Z.

Break Binary Stream into Blocks of 8: Breaks a binary stream of 0’s and 1’s onto
blocks of 8. If the input is not 0’s and 1’s the program will generate an error.

Cryptography Notes: Technology Guides 169



CHAPTER 3. INTRODUCTION TO CRYPTOGRAPHY EXPLORER

Break Binary Stream into Blocks of 16: Breaks a binary stream of 0’s and 1’s onto
blocks of 16. If the input is not 0’s and 1’s the program will generate an error.

Break Binary Stream into Blocks of 32: Breaks a binary stream of 0’s and 1’s onto
blocks of 32. If the input is not 0’s and 1’s the program will generate an error.

Break Binary Stream into Blocks of 64: Breaks a binary stream of 0’s and 1’s onto
blocks of 64. If the input is not 0’s and 1’s the program will generate an error.

Break Binary Stream into Blocks of 128: Breaks a binary stream of 0’s and 1’s onto
blocks of 128. If the input is not 0’s and 1’s the program will generate an error.

Break Binary Stream into Blocks of 256: Breaks a binary stream of 0’s and 1’s onto
blocks of 256. If the input is not 0’s and 1’s the program will generate an error.

Break Binary Stream into Blocks of 512: Breaks a binary stream of 0’s and 1’s onto
blocks of 512. If the input is not 0’s and 1’s the program will generate an error.

Break Binary Stream into Blocks of 1024: Breaks a binary stream of 0’s and 1’s onto
blocks of 1024. If the input is not 0’s and 1’s the program will generate an error.

Break Binary Stream into Blocks of n...: Breaks a binary stream of 0’s and 1’s onto
blocks of size n. If the input is not 0’s and 1’s the program will generate an error.
When selected a dialog box will open allowing the user to select the block size.

Figure 3.37: Binary Stream Block Dialog

Break ASCII Stream into Blocks of 3: Breaks a number stream onto blocks of 3. If
the input is not a stream of numbers with no spaces the program will generate an
error.

Break ASCII Stream into Blocks of 6: Breaks a number stream onto blocks of 6. If
the input is not a stream of numbers with no spaces the program will generate an
error.

Break ASCII Stream into Blocks of 9: Breaks a number stream onto blocks of 9. If
the input is not a stream of numbers with no spaces the program will generate an
error.

Break ASCII Stream into Blocks of 12: Breaks a number stream onto blocks of 12. If
the input is not a stream of numbers with no spaces the program will generate an error.

Cryptography Notes: Technology Guides 170



CHAPTER 3. INTRODUCTION TO CRYPTOGRAPHY EXPLORER

Break ASCII Stream into Blocks of 15: Breaks a number stream onto blocks of 15. If
the input is not a stream of numbers with no spaces the program will generate an error.

Break ASCII Stream into Blocks of 18: Breaks a number stream onto blocks of 18. If
the input is not a stream of numbers with no spaces the program will generate an error.

Break ASCII Stream into Blocks of 21: Breaks a number stream onto blocks of 321.
If the input is not a stream of numbers with no spaces the program will generate an
error.

Break ASCII Stream into Blocks of 24: Breaks a number stream onto blocks of 24. If
the input is not a stream of numbers with no spaces the program will generate an error.

Break ASCII Stream into Blocks of 27: Breaks a number stream onto blocks of 27. If
the input is not a stream of numbers with no spaces the program will generate an error.

Break ASCII Stream into Blocks of 30: Breaks a number stream onto blocks of 30. If
the input is not a stream of numbers with no spaces the program will generate an error.

Break ASCII Stream into Blocks of 45: Breaks a number stream onto blocks of 45. If
the input is not a stream of numbers with no spaces the program will generate an error.

Break ASCII Stream into Blocks of 60: Breaks a number stream onto blocks of 60. If
the input is not a stream of numbers with no spaces the program will generate an error.

Break ASCII Stream into Blocks of 90: Breaks a number stream onto blocks of 90. If
the input is not a stream of numbers with no spaces the program will generate an error.

Break ASCII Stream into Blocks of n...: Breaks a number stream onto blocks of size
n. If the input is not a stream of numbers with no spaces the program will generate an
error. When selected a dialog box will open allowing the user to select the block size.

Figure 3.38: ASCII Stream Block Dialog

Break Character Stream into Blocks of 1: Breaks a character stream onto blocks of 1.

Break Character Stream into Blocks of 2: Breaks a character stream onto blocks of 2.

Break Character Stream into Blocks of 3: Breaks a character stream onto blocks of 3.

Break Character Stream into Blocks of 4: Breaks a character stream onto blocks of 4.

Cryptography Notes: Technology Guides 171



CHAPTER 3. INTRODUCTION TO CRYPTOGRAPHY EXPLORER

Break Character Stream into Blocks of 5: Breaks a character stream onto blocks of 5.

Break Character Stream into Blocks of 10: Breaks a character stream onto blocks of
10.

Break Character Stream into Blocks of 15: Breaks a character stream onto blocks of
15.

Break Character Stream into Blocks of 20: Breaks a character stream onto blocks of
20.

Break Character Stream into Blocks of 25: Breaks a character stream onto blocks of
25.

Break Character Stream into Blocks of 30: Breaks a character stream onto blocks of
30.

Break Character Stream into Blocks of 40: Breaks a character stream onto blocks of
40.

Break Character Stream into Blocks of 50: Breaks a character stream onto blocks of
50.

Break Character Stream into Blocks of 75: Breaks a character stream onto blocks of
75.

Break Character Stream into Blocks of 80: Breaks a character stream onto blocks of
80.

Break Character Stream into Blocks of 100: Breaks a character stream onto blocks of
100.

Break Character Stream into Blocks of n...: Breaks a character stream onto blocks of
size n. When selected a dialog box will open allowing the user to select the block size.

Figure 3.39: Character Stream Block Dialog

Cryptography Notes: Technology Guides 172



CHAPTER 3. INTRODUCTION TO CRYPTOGRAPHY EXPLORER

3.5.4 Notepad

The Notepad window is a simple text editing window. The editing window is a standard
Input box, with the usual file, editing and text conversion tools. The notepad also has one
other option in the Options menu, to toggle the wrap mode of the box between wrapping at
word breaks and wrapping at the character level.

Figure 3.40: Notepad

3.5.5 Gridpad

The Gridpad is essentially a grid-based notepad, it is simply a place for the user to input
grid or spreadsheet type data into a convenient grid tool. This tool is not a spreadsheet,
there are no numeric tools available in this grid, it is simply to ease the display of grid data.

Figure 3.41: Gridpad

Cryptography Notes: Technology Guides 173



CHAPTER 3. INTRODUCTION TO CRYPTOGRAPHY EXPLORER

How to Use the Tool

1. Select the size of the desired grid.

2. Input the desired data.

3. Select any desired options from the menu.

Options

• The toolbar with the following options.

File —

New: Removes the current data from the grid and resizes the grid to 3 X 3.

Open: Opens a tab delimited text file and loads the data into the grid.

Save As: Saves the current grid to a text file.

Print: Prints the current grid to the selected printer.

Grid Only: Prints the contents of the grid.

Row One as Header: Prints the contents of the grid using the first row as
a header row.

Row One and Column One as Headers: Prints the contents of the grid
using the first row as a header row and the first column as a header
column.

Print Preview: Prints the current grid to the print preview display.

Grid Only: Prints the contents of the grid.

Row One as Header: Prints the contents of the grid using the first row as
a header row.

Row One and Column One as Headers: Prints the contents of the grid
using the first row as a header row and the first column as a header
column.

Edit —

Copy: Copies the grid to the clipboard.

Copy as LaTeX (tabular, No Header): Copies the entire grid to the clip-
board using the syntax for the LaTeX tabular environment. The tabular
code treats all grid entries equally, no data is used as a header.

Copy as LaTeX (longtable, No Header): Copies the entire grid to the clip-
board using the syntax for the LaTeX longtable environment. The longtable
code treats all grid entries equally, no data is used as a header.

Copy as LaTeX (tabular, With Header): Copies the entire grid to the clip-
board using the syntax for the LaTeX tabular environment. The first row of
the grid is treated as a header row, and is bold faced.

Cryptography Notes: Technology Guides 174



CHAPTER 3. INTRODUCTION TO CRYPTOGRAPHY EXPLORER

Copy as LaTeX (longtable, With Header): Copies the entire grid to the clip-
board using the syntax for the LaTeX longtable environment. The first row
of the grid is treated as a header row, it is bold faced and it is set up to repeat
on subsequent pages if the longtable is broken between pages.

Transpose Grid: This transposes the grid, it makes rows into columns and
columns into rows.

Notes

• The menu options are discussed in the help system for this program. The grid can
copy and paste to and from a standard spreadsheet and word processor by using the
standard keyboard keys (Ctrl+C and Ctrl+V).

3.5.6 User Defined Language Creator

The User Defined Language tool is for creating a language with letter frequencies that can be
used in place of English in the program. Not all ciphers lend themselves easily to changing
the language but some do. The Monoalphabetic substitution, Vigenère and Hill ciphers allow
user defined languages as does the dot product analysis tool. This feature allows the user
to experiment with the cryptographic concepts without the aid of a familiar language. The
user could also use this tool to add languages to the program, such as French, German, and
Spanish.

Figure 3.42: User Defined Language Creator Tool

How to Use the Tool

1. Select the number of characters in the language.

2. Type in a language character in the left column and the corresponding relative fre-
quency of the character in the right hand column.

Cryptography Notes: Technology Guides 175



CHAPTER 3. INTRODUCTION TO CRYPTOGRAPHY EXPLORER

Options

• The toolbar with the following options.

File —

New: Clears the language table.

Open: Loads a user defined language file into the grid.

Save As: Saves the current grid contents to a file.

Print: Prints the current grid to the selected printer.

Print Preview: Prints the current grid to the print preview display.

Edit —

Copy: Copies the grid to the clipboard.

Paste: Pastes the contents of the clipboard into the grid.

Copy as LaTeX (tabular): Copies the entire grid to the clipboard using the
syntax for the LaTeX tabular environment.

Copy as LaTeX (longtable): Copies the entire grid to the clipboard using the
syntax for the LaTeX longtable environment.

Tools —

Convert Characters to Uppercase: Changes all of the characters in the left
hand column to uppercase.

Sort by Character: Sorts the table using the character column of the table and
alphabetical order.

Sort Ascending by Frequency: Sorts the table, from lowest to highest, using
the frequency column of the table.

Sort Descending by Frequency: Sorts the table, from highest to lowest, using
the frequency column of the table.

Check if Language is Valid: Checks to see if the current contents of the grid
represent a valid language. For the language to be valid there, each character
must be a single character, the character may not be used, there can be no
duplications of letters, and the frequencies must all be numbers.

Notes

• In a valid language, each character must be a single character, the character may
not be used, there can be no duplications of letters, and the frequencies must all be
numbers.

• If the frequencies do not add up to one, the tools will adjust the frequencies to add to
one. If all the frequencies are 0, the program will adjust them to be equal.

Cryptography Notes: Technology Guides 176



CHAPTER 3. INTRODUCTION TO CRYPTOGRAPHY EXPLORER

3.6 Calculators

3.6.1 Integer Calculator

The Integer Calculator is a simple infinite precision integer arithmetic tool.

Figure 3.43: Integer Calculator

How to Use the Tool

1. Input the numbers into the three input boxes, #1, #2, and #3,

2. Select the operation from the Calculate menu at the top of the window.

Calculate Menu Options

Arithmetic —

#1 + #2 Adds the numbers from input box #1 and #2.

#1 - #2 Subtracts the number in input box #2 from #1.

#1 * #2 Multiplies the numbers from input box #1 and #2.

#1 ˆ #2 Raises the number from input box #1 to the power of #2. Since this is
not a modular operation if the program suspects that the calculation will be too
large for computation, it will display a warning.

#1 / #2 Divides the number from input box #1 by #2. This is an integer operation,
so 4/3 will result in 1.

Cryptography Notes: Technology Guides 177



CHAPTER 3. INTRODUCTION TO CRYPTOGRAPHY EXPLORER

Rem(#1, #2) Finds the remainder when the number from input box #1 is divided
by #2.

Modular Arithmetic —

#1 + #2 Mod (#3) Adds the numbers from input box #1 and #2 modulo #3.

#1 - #2 Mod (#3) Subtracts the number in input box #2 from #1 modulo #3.

#1 * #2 Mod (#3) Multiplies the numbers from input box #1 and #2 modulo #3.

#1 ˆ #2 Mod (#3) Raises the number from input box #1 to the power of #2
modulo #3.

#1 / #2 Mod (#3) Divides the number from input box #1 by #2 modulo #3. If
input #2 is not invertible modulo #3 the program will display an error.

#1 Mod (#3) Takes input #1 modulo #3.

#2 Mod (#3) Takes input #2 modulo #3.

GCD —

GCD These commands find the GCD of the numbers listed in the menu option.

GCD of List These option will calculate the GCD of the list of elements in the se-
lected input box. A list in this calculator is a set of numbers separated by commas.
For example, the list 12, 4, 16, 200 will return 4 as its GCD.

Factorial —

Factorial Calculates the factorial of the number in the selected input box. If the
program suspects that the result is too large it will display a warning. Also if the
input is larger than 2147483647, the program will not do the operation.

Double Factorial Calculates the double factorial of the number in the selected input
box. If the program suspects that the result is too large it will display a warning.
Also if the input is larger than 2147483647, the program will not do the operation.

Square Root —

Square Root Calculates the square root of the number in the selected input box.
The output is a decimal number.

Floor of Square Root Calculates the floor of the square root of the number in the
selected input box. The output is an integer.

Chinese Remainder Theorem — The Chinese Remainder Theorem requires two lists,
one of residues and the other of moduli. Lists in this program are simply numbers
separated by commas. For example, 23, 45, 67 is a list of three integers. So for the
Chinese Remainder Theorem if the residue list is 1, 2, 3 and the modulus list is 5, 7, 11
then the program will compute x (mod 5 · 7 · 11) that satisfies x = 1 (mod 5), x = 2
(mod 7), x = 3 (mod 11).

Cryptography Notes: Technology Guides 178



CHAPTER 3. INTRODUCTION TO CRYPTOGRAPHY EXPLORER

Jacobi Symbol — Finds the Jacobi Symbol of a over b, that is,
(
a
b

)
, where a and b are

the numbers in the chosen input boxes.

Primes —

Is Prime Tests if the number in the selected input box is prime or composite. If the
result is a probable prime, the probability that the number is composite is less
than 2−100.

Next Prime Calculates the next probable prime number greater than the one in the
selected input box. The probability that the number is composite is less than
2−100.

Previous Prime Calculates the next probable prime number less than the one in the
selected input box. The probability that the number is composite is less than
2−100.

Semiprime Calculates the semiprime number composed of the next probable primes
of the two selected input boxes.

Number of Primes Returns the number of prime numbers less than or equal to the
selected input box. The input can be at most 2,000,000,000 for this operation.

Nth Prime Returns the nth prime number. The input can be at most 100,000,000
for this operation.

Totient — Returns the Euler Totient (Euler Phi) of the number in the selected input box.
The calculation of the totient requires the factorization of the number and hence can
be lengthy operations.

Primitive Root —

Primitive Root Calculates the smallest primitive root modulo the number in the
selected input box. Calculation of a primitive root requires the factorization of
the totient of the number and hence can be lengthy operations.

Is Primitive Root Checks if the selected input box number is a primitive root mod-
ulo the number in the other selected input box. Verification of a primitive root
requires the factorization of the totient of the number and hence can be lengthy
operations.

Factor — Returns the factorization of the number in the selected input box. Factorization
of a number can be a lengthy operation.

Discrete Logarithm —

Pohlig-Hellman/Pollard Rho This option solves the discrete logarithm problem
using the Pohlig-Hellman reduction with the Pollard Rho method. Discrete log-
arithm problems can be lengthy operations.

Cryptography Notes: Technology Guides 179



CHAPTER 3. INTRODUCTION TO CRYPTOGRAPHY EXPLORER

Index Calculus This option solves the discrete logarithm problem using the index
calculus method with the selected prime base size. Discrete logarithm problems
can be lengthy operations.

Index Calculus (Prime Base Size = n) This option solves the discrete logarithm
problem using the index calculus method with a prime base size that is input by
the user. Discrete logarithm problems can be lengthy operations.

Evaluate — Evaluates the numeric expression in the selected input box. The syntax for
these expressions is given in the below subsection.

Options

• Several options in the calculate menu require lengthy derivations and in these cases
the calculation will be done in its own thread and the Abort option will be available
to cancel the operation if desired.

Notes

• The Chinese Remainder Theorem requires two lists, one of residues and the other of
moduli. Lists in this program are simply numbers separated by commas. For example,
23, 45, 67 is a list of three integers. So for the Chinese Remainder Theorem if the
residue list is 1, 2, 3 and the modulus list is 5, 7, 11 then the program will compute x
(mod 5 · 7 · 11) that satisfies x = 1 (mod 5), x = 2 (mod 7), and x = 3 (mod 11).

• The GCD calculations that operate on lists require a list of numbers separated by
commas. For example, if 225, 25, 55 is in an input box then the GCD on that list will
return 5.

• Totients, primitive roots and factoring all require the factoring of a number and hence
can be lengthy operations.

• The calculator also has the ability to evaluate simple algebraic integer expressions.
The syntax of the expressions is discussed below. To evaluate the expression of any of
the three cells simply select the evaluate option.

Expression Syntax

Arithmetic operations use the standard characters (+, -, *, / and ˆ) and juxtaposition is
not supported. So for example, the expression 2 3 would cause a syntax error but 2 * 3 would
return 6. Grouping is done with parentheses (). The modulus operator % is also available,
so 23 % 7 would return 2. Note that division is integer division, so 23/7 would return 3.

The calculator also accepts a few functions, discussed below. The system is case insensi-
tive, so nextprime, Nextprime, NextPrime, or NeXtpRIme all return the next prime.

factorial(n) returns the factorial of n, that is, n!.

Cryptography Notes: Technology Guides 180



CHAPTER 3. INTRODUCTION TO CRYPTOGRAPHY EXPLORER

doublefactorial(n) returns the double factorial of n, that is, n!!.

pi(n) returns the number of primes less than or equal to n. The value of n can be at most
2,000,000,000.

nextprime(n) returns the next probable prime greater than n.

previousprime(n) returns the next probable prime less than n.

semiprime(n, m) returns the semiprime created from the next probable prime greater
than n and the next probable prime greater than m.

totient(n) returns the number of integers less then n that are relatively prime to n.

eulerphi(n) returns the number of integers less then n that are relatively prime to n.

primitiveroot(n) returns the smallest positive primitive root of n. Here, n must be prime.

mod(a, n) returns a (mod n).

gcd(a, b) returns the greatest common divisor of a and b.

gcd(a, b, c, ...) returns the greatest common divisor of a, b, c, . . . .

jacobi(a, b) returns the jacobi symbol of a over b. Here, b most be positive and odd.

powermod(a, e, n) returns ae (mod n).

chrem(a1, n1, a2, n2, ... ar, nr) returns the value x that satisfies the congruences x =
a1 (mod n)1, x = a2 (mod n)2, . . . , x = ar (mod n)r. The list of residues and moduli
may be as long as the user chooses.

chineseremainder(a1, n1, a2, n2, ... ar, nr) returns the value x that satisfies the con-
gruences x = a1 (mod n)1, x = a2 (mod n)2, . . . , x = ar (mod n)r. The list of
residues and moduli may be as long as the user chooses.

3.6.2 Modular Matrix Calculator

The Modular Matrix Calculator is a simple matrix manipulator and arithmetic tool. Each
matrix has an associated modulus for all calculations. Reduction, inverses and matrix arith-
metic is done over the associated modulus. Two matrices can only be added, subtracted or
multiplied if they have the same modulus, and appropriate sizes.

The list on the left is the current set of matrices that are in the workspace. The panel
on the right is the currently selected matrix from the list. The panel at the bottom is a row
operation panel that gives the user a quick interface to do row operations on the currently
selected matrix. This panel is hidden when the calculator is started but can toggled on and
off from the calculate menu.

Cryptography Notes: Technology Guides 181



CHAPTER 3. INTRODUCTION TO CRYPTOGRAPHY EXPLORER

Figure 3.44: Modular Matrix Calculator

How to Use the Tool

1. To input a matrix, select Edit > New Matrix. . . from the menu. At this point the
matrix input/edit dialog box will appear.

Figure 3.45: New Matrix Dialog

The program will select a matrix name of the form M### where the ### is a
number that has not been used for another matrix in the workspace. You can change
the name but it must be unique to the workspace, no two matrices can share the same

Cryptography Notes: Technology Guides 182



CHAPTER 3. INTRODUCTION TO CRYPTOGRAPHY EXPLORER

name. Then select the size of the matrix, the maximum size for this program is 100
rows and 100 columns. Next input the modulus, the modulus must be an integer but
is not restricted in size. Finally, input the matrix entries into the matrix grid and click
on the OK button.

At this point the matrix will be loaded into the workspace. The program will mod all
the entries by the modulus before loading it into the workspace.

2. Select an operation from the Calculate menu at the top of the window, the options are
discussed below.

Menu Options

File —

New: Clears the current workspace.

Open: Opens a workspace file.

Save As: Saves a workspace file.

Save As LaTeX: Saves the contents of the workspace to a LaTeX file.

Print: Prints the current workspace to the selected printer.

Print Preview: Opens the print preview window with the current workspace.

Edit —

New Matrix: Opens the new matrix dialog box allowing the user to input a new
matrix.

Edit Matrix: Opens the edit matrix dialog box allowing the user to edit the currently
selected matrix. When the user clicks OK, a new matrix will be loaded into the
workspace, the original matrix will remain unaltered. This allows the user to
make a copy of the current matrix by simply selecting to edit the matrix and then
clicking OK. The edit matrix dialog box will also be invoked by double-clicking
the matrix name and description in the workspace list on the left.

Copy Matrix: Copies the contents of the current matrix to the clipboard. The copy
is done in a tab-delimited format so that it can be pasted into a spreadsheet or
into any another grid in this program.

Copy Matrix to LaTeX: Copies the current matrix to a LaTeX array environment.

Copy Matrix to Mathematica Syntax: Copies the current matrix to Mathemat-
ica syntax.

Copy Matrix to Maxima Syntax: Copies the current matrix to Maxima syntax.

Copy Workspace to LaTeX: Copies the entire workspace to LaTeX.

Calculate —

Cryptography Notes: Technology Guides 183



CHAPTER 3. INTRODUCTION TO CRYPTOGRAPHY EXPLORER

Show/Hide Row Operations Panel: This toggles the row operations panel at the
bottom of the window. If there is no matrix in the workspace the panel will
remain hidden. The row operations panel has three tabs, one for each of the
three standard row operations. Once the operation type is selected, fill in the
parameters needed and select Apply. At this point a new matrix will be added to
the workspace which is the current matrix with the operation applied to it.

Reduce: Reduces the matrix as far as it can. Since all calculations are done over a
modulus, the result may not look like a reduced matrix over the real numbers. For
example, if there are no invertible elements in a column the program will move
to the next column to find any possible reductions.

Add: This will bring up a dialog box allowing the user to select the two matrices to
add. The selection is done by matrix name in two drop-down boxes.

Subtract: This will bring up a dialog box allowing the user to select the two matrices
to subtract. The selection is done by matrix name in two drop-down boxes.

Negate: Will negate the current matrix, by the matrix modulus.

Multiply: This will bring up a dialog box allowing the user to select the two matrices
to multiply. The selection is done by matrix name in two drop-down boxes.

Scalar Multiply: This will bring up a dialog box allowing the user to input the scalar
to multiply by. The scalar must be an integer.

Invert: This will invert the current matrix, under the modulus.

Power: This will bring up a dialog box allowing the user to select an integer power
between -100 and 100.

Transpose: This will transpose the current matrix.

Notes

• When an operation is done on a matrix the original matrix is not altered, instead a
new matrix is loaded into the workspace.

• As with any operation in linear algebra, if the matrix sizes are not compatible for the
selected operation you will get an error.

3.6.3 Elliptic Curve Calculator

The Elliptic Curve Calculator is a simple tool to aid in some calculations involving points
on an elliptic curve. This tool uses the reduced form of an elliptic curve

y2 = x3 + bx+ c (mod m)

Cryptography Notes: Technology Guides 184



CHAPTER 3. INTRODUCTION TO CRYPTOGRAPHY EXPLORER

Figure 3.46: Modular Matrix Calculator

How to Use the Tool

Input the parameters for the elliptic curve, specifically the linear term, the constant term,
and modulus. Input the coordinates for one or two points on the curve and/or a constant
n. Select the operation from the Calculate menu at the top of the window.

Menu Options

Calculate —

P1 + P2: Adds the two points P1 and P2 on the curve. Note that this does not check
if the points are on the curve.

n * P1: Multiplies n times P1. Note that this does not check if the point P1 is on
the curve.

n! * P1: Multiplies n! times P1. Note that this does not check if the point P1 is on
the curve.

n * P2: Multiplies n times P2. Note that this does not check if the point P2 is on
the curve.

Cryptography Notes: Technology Guides 185



CHAPTER 3. INTRODUCTION TO CRYPTOGRAPHY EXPLORER

n! * P2: Multiplies n! times P2. Note that this does not check if the point P2 is on
the curve.

Is P1 on the Curve?: Determines if the point P1 is on the curve.

Is P2 on the Curve?: Determines if the point P2 is on the curve.

Is m prime?: Determines if m is probably prime or composite.

Order of P1: Determines the order of the point P1. Note that this does not check if
the point P1 is on the curve.

Order of P2: Determines the order of the point P2. Note that this does not check if
the point P2 is on the curve.

Generate elliptic curve using b, m, and P1: Finds the constant term needed for
the point P1 to be on the curve given the values of the linear term and modulus.

Generate elliptic curve using b, m, and P2: Finds the constant term needed for
the point P2 to be on the curve given the values of the linear term and modulus.

Generate point on the elliptic curve using x value of P1: Finds a point on the
elliptic curve with the same x coordinate as P1, if one exists.

Generate point on the elliptic curve using x value of P2: Finds a point on the
elliptic curve with the same x coordinate as P2, if one exists.

Generate point on the elliptic curve using y value of P1: Finds a point on the
elliptic curve with the same y coordinate as P1, if one exists.

Generate point on the elliptic curve using y value of P2: Finds a point on the
elliptic curve with the same y coordinate as P2, if one exists.

Generate a random point on the elliptic curve: Finds a random point on the
elliptic curve.

Generate 10 random points on the elliptic curve: Finds 10 random points on
the elliptic curve. Note that there may be repeated points in this list.

Find the number of points on the elliptic curve: Returns the number of points
on the elliptic curve.

Generate all points on the elliptic curve: Returns a list of all the points on the
elliptic curve. A list of Mathematica style points and Maxima style points are
returned as well for loading into these computer algebra systems.

Notes

• Several options in the calculate menu require lengthy derivations and in these cases
the calculation will be done in its own thread and the Abort option will be available
to cancel the operation if desired.

Cryptography Notes: Technology Guides 186



CHAPTER 3. INTRODUCTION TO CRYPTOGRAPHY EXPLORER

3.6.4 Random Number Generator

The Random Number Generator will create either a list of random numbers using either a
linear congruential algorithm or Java’s built in Random class, or a stream of random binary
digits using the Blum-Blum-Shub algorithm.

Figure 3.47: Random Number Generator

How to Use the Tool

1. Select the generator algorithm you wish to use, linear congruential, Java’s built-in
random number generator, or the Blum-Blum-Shub algorithm.

2. Input the number of random numbers (or random bits) you wish to generate.

3. Input the parameters for the method, this will depend on the method chosen.

4. Click the Generate button to generate the numbers or bits.

Options

Linear Congruential: For the Linear Congruential algorithm you will need to supply a
seed to the sequence, an adder, multiplier and modulus. For the seed, you can click on
the Use Clock button to get a nanosecond representation of the current time.

Java’s Random Class: The built-in random number generator in Java (the language this
program was written in) also uses a linear congruential algorithm but keeps a constant
adder and multiplier, so you need only supply the seed and modulus. As with the

Cryptography Notes: Technology Guides 187



CHAPTER 3. INTRODUCTION TO CRYPTOGRAPHY EXPLORER

linear congruential algorithm you can click on the Use Clock button to get a nanosecond
representation of the current time for the seed. Also, when using Java’s random number
generator, the modulus can be at most 9,223,372,036,854,775,807. If you use a modulus
larger than this the program will automatically convert it to this maximum.

Blum-Blum-Shub Algorithm: The Blum-Blum-Shub Algorithm is for the generation of
random bits. For this algorithm you must supply the seed, again you can use the clock,
and two primes p and q. Each of the prime input boxes has an option for generating
the next probable prime larger then the number currently in the box. Note that these
buttons will find the next prime that is congruent to 3 (mod 4). For this algorithm,
the modulus is pq, so you do not need to input it, it will be calculated when you click
on the Generate button.

3.7 Factoring Tools

3.7.1 Brute Force Factoring

The Brute Force Factoring tool will factor an integer into its prime factor decomposition
using the brute force method of trial division.

Figure 3.48: Brute Force Factoring Tool

How to Use the Tool

1. Input the number to be factored into the Input box.

Cryptography Notes: Technology Guides 188



CHAPTER 3. INTRODUCTION TO CRYPTOGRAPHY EXPLORER

2. Select the type of trial division,

• Use Only Probable Primes — will calculate the next probable prime for trial
division.

• Use 2 and All Odd Numbers — will use 2, 3, 5, 7, 9, 11, 13, 15, 17, 19, . . . for the
trial division.

3. Click the Factor button.

Options

Use Only Probable Primes: This will calculate the next probable prime for trial division.

Use 2 and All Odd Numbers: This will use 2, 3, 5, 7, 9, 11, 13, 15, 17, 19, ... for the
trial division.

Status Bar Information

Since factoring methods could take some time to complete, there is status bar information
that shows you if the method is making progress on factoring the number. On the far right
is the elapsed time and on the left is a display of the current trial divisor being tested.

Notes

• When a divisor is found the program will take the quotient and apply brute force
factoring to it.

• After a new quotient is calculated it is checked to be a probable prime, if it is, the
process is finished and the program will report the results.

• The output of the factorization is in 4 forms. The first is an expanded multiplication,
the second is a product expression with powers, the third is a list format equivalent to
the Maxima output of the ifactors command, and the last is a list format equivalent to
the Mathematica output of the FactorInteger command. For example, when factoring
11110988889 the output is,

3 * 3 * 3 * 7 * 11 * 13 * 37 * 41 * 271
3ˆ3 * 7 * 11 * 13 * 37 * 41 * 271
[[3,3], [7,1], [11,1], [13,1], [37,1], [41,1], [271,1]]
{{3,3}, {7,1}, {11,1}, {13,1}, {37,1}, {41,1}, {271,1}}
Time: 0.047 sec.

• At the bottom of the output box is the amount of time used for the factoring operation.

• Factoring integers can be a lengthy process, the factoring operation is done in a separate
thread so that the user can use other facilities of the program while a factoring operation
is being completed.

Cryptography Notes: Technology Guides 189



CHAPTER 3. INTRODUCTION TO CRYPTOGRAPHY EXPLORER

• When the factoring operation is invoked, the Factor button will be changed to an Abort
button. To end the process simply click on the Abort button.

3.7.2 Fermat Factoring

The Fermat Factoring algorithm simply computes n + i2, for i = 1, 2, 3, . . . until the result
is a perfect square. Then n+ i2 = d2, so n = d2 − i2 = (d+ i)(d− i).

Figure 3.49: Fermat Factoring Tool

How to Use the Tool

1. Input the number to be factored into the Input box.

2. Click the Factor button.

Status Bar Information

Since factoring methods could take some time to complete, there is status bar information
that shows you if the method is making progress on factoring the number. On the far right
is the elapsed time and on the left is a display of the current difference being tested.

Notes

• The method does not find a complete prime factorization of n, even if it finds a factor.
So the factors in the output could still be composite.

Cryptography Notes: Technology Guides 190



CHAPTER 3. INTRODUCTION TO CRYPTOGRAPHY EXPLORER

• The output of the factorization is in 3 forms. The first is as a product, the second is
a list format equivalent to the Maxima output of the ifactors command, and the last
is a list format equivalent to the Mathematica output of the FactorInteger command.
For example, when factoring 5371384963127189 the output is,

73290023 * 73289443
[[73290023,1], [73289443,1]]
{{73290023,1}, {73289443,1}}
Time: 0.047 sec.

• At the bottom of the output box is the amount of time used for the factoring operation.

• Factoring integers can be a lengthy process, the factoring operation is done in a separate
thread so that the user can use other facilities of the program while a factoring operation
is being completed.

• When the factoring operation is invoked, the Factor button will be changed to an Abort
button. To end the process simply click on the Abort button.

3.7.3 Pollard p− 1 Factoring

The Pollard p − 1 Factoring algorithm simply computes b = aB! (mod n) and then finds
d = gcd(b − 1, n). If 1 < d < n then we have a non-trivial factor of n. This tool makes a
slight alteration of the algorithm by iterating until a factorization if found or the user aborts
the calculation. At each iteration, B is incremented by one, b is updated by computing(
a(B−1)!

)B
(mod n) and then finally computing d. The iteration stops when a factor is

found.

How to Use the Tool

1. Input the number to be factored into the Input box.

2. Input the base, a, to be used in the calculation of b.

3. Click the Factor button. If the process is successful, the output box will contain the
smallest value of B that succeeded in factoring n, the factorization n = d · q in three
forms, and the amount of time the process took to find a factor of n.

Status Bar Information

Since factoring methods could take some time to complete, there is status bar information
that shows you if the method is making progress on factoring the number. On the far right
is the elapsed time and on the left is a display of the current iteration.

Cryptography Notes: Technology Guides 191



CHAPTER 3. INTRODUCTION TO CRYPTOGRAPHY EXPLORER

Figure 3.50: Pollard p− 1 Factoring Tool

Notes

• The method does not find a complete prime factorization of n, even if it finds a factor.
So the factors in the output could still be composite.

• The range for the base, a, is 2 to 1,000,000.

• The output of the factorization is in 3 forms. The first is as a product, the second is
a list format equivalent to the Maxima output of the ifactors command, and the last
is a list format equivalent to the Mathematica output of the FactorInteger command.
For example, when factoring 781930847130871 the output is,

B = 251
1819751 * 429691121
[[1819751,1], [429691121,1]]
{{1819751,1}, {429691121,1}}
Time: 0.046 sec.

• At the bottom of the output box is the amount of time used for the factoring operation.

• Factoring integers can be a lengthy process, the factoring operation is done in a separate
thread so that the user can use other facilities of the program while a factoring operation
is being completed.

• When the factoring operation is invoked, the Factor button will be changed to an Abort
button. To end the process simply click on the Abort button.

Cryptography Notes: Technology Guides 192



CHAPTER 3. INTRODUCTION TO CRYPTOGRAPHY EXPLORER

3.7.4 Williams P + 1 Factoring

The Williams p+ 1 Factoring algorithm simply computes the sequence Vi defined as, V0 = 2,
V1 = a, and Vi = a · Vi−1 − Vi−2 (mod n). For each Vk!, we compute d = gcd(Vk! − 2, n), if
1 < d < n we have found a non-trivial factor of n.

Figure 3.51: Williams p+ 1 Factoring Tool

How to Use the Tool

1. Input the number to be factored into the Input box.

2. Input the starting value of the sequence, a.

3. Click the Factor button.

Status Bar Information

Since factoring methods could take some time to complete, there is status bar information
that shows you if the method is making progress on factoring the number. On the far right
is the elapsed time and on the left is a display of the current iteration.

Notes

• The method does not find a complete prime factorization of n, even if it finds a factor.
So the factors in the output could still be composite.

• The range for the base, a, is 3 to 1,000,000.

Cryptography Notes: Technology Guides 193



CHAPTER 3. INTRODUCTION TO CRYPTOGRAPHY EXPLORER

• The output of the factorization is in 3 forms. The first is as a product, the second is
a list format equivalent to the Maxima output of the ifactors command, and the last
is a list format equivalent to the Mathematica output of the FactorInteger command.
For example, when factoring 781930847130871 the output is,

Iterations: 251
1819751 * 429691121
[[1819751,1], [429691121,1]]
{{1819751,1}, {429691121,1}}
Time: 0.266 sec.

• At the bottom of the output box is the amount of time used for the factoring operation.

• Factoring integers can be a lengthy process, the factoring operation is done in a separate
thread so that the user can use other facilities of the program while a factoring operation
is being completed.

• When the factoring operation is invoked, the Factor button will be changed to an Abort
button. To end the process simply click on the Abort button.

• The implementation of this algorithm uses an iterative building scheme to calculate
Vk!, so the output of 251 iterations means that the program found a non-trivial factor
at V251!.

3.7.5 Pollard Rho Factoring

The Pollard Rho Factoring algorithm simply computes two sequences, {xi} and {yi} defined
as x0 = y0 = a, xi = g(xi−1)) and yi = g(g(yi−1)), where g(x) = x2 + 1 (mod n) or
g(x) = a · x2 + b · x + c (mod n), depending on your selection of options. For each i, we
compute d = gcd(|xi − yi|, n), if 1 < d < n we have found a non-trivial factor of n. If, on
the other hand, d = n the method fails.

How to Use the Tool

1. Input the number to be factored into the Input box.

2. Input the starting value of the sequences, a.

3. Click the Factor button.

Options

• The base a is the starting value of both the x and y sequences, the range for the base
is 2 to 1,000,000.

Cryptography Notes: Technology Guides 194



CHAPTER 3. INTRODUCTION TO CRYPTOGRAPHY EXPLORER

Figure 3.52: Pollard Rho Factoring Tool

• The program allows you to select between using g(x) = x2 + 1 (mod n) or g(x) =
a · x2 + b · x+ c (mod n) as the sequence generating function. With the more general
quadratic function you may select the coefficients of the terms to be any integer between
−1, 000, 000 to 1, 000, 000.

Status Bar Information

Since factoring methods could take some time to complete, there is status bar information
that shows you if the method is making progress on factoring the number. On the far right
is the elapsed time and on the left is a display of the current iteration.

Notes

• The method does not find a complete prime factorization of n, even if it finds a factor.
So the factors in the output could still be composite.

• The range for the base, a, is 2 to 1,000,000.

• The each of the g(x) coefficients range from −1, 000, 000 to 1, 000, 000.

• The output of the factorization is in 3 forms. The first is as a product, the second is
a list format equivalent to the Maxima output of the ifactors command, and the last
is a list format equivalent to the Mathematica output of the FactorInteger command.
For example, when factoring 781930847130871 the output is,

Cryptography Notes: Technology Guides 195



CHAPTER 3. INTRODUCTION TO CRYPTOGRAPHY EXPLORER

Iterations: 1297
1819751 * 429691121
[[1819751,1], [429691121,1]]
{{1819751,1}, {429691121,1}}
Time: 0.046 sec.

• At the bottom of the output box is the amount of time used for the factoring operation.

• The iteration count is for each iteration of the computation of the next x, next y and
the GCD of the difference with n. Hence each iteration consists of three evaluations
of g and a GCD.

• Factoring integers can be a lengthy process, the factoring operation is done in a separate
thread so that the user can use other facilities of the program while a factoring operation
is being completed.

• When the factoring operation is invoked, the Factor button will be changed to an Abort
button. To end the process simply click on the Abort button.

3.7.6 Brent’s Method Factoring

The Brent’s Method Factoring algorithm simply computes the sequence, {xi} defined as
x0 = a, xi = g(xi−1), where g(x) = x2 + 1 (mod n) or g(x) = a · x2 + b · x + c (mod n),
depending on your selection of options. For each i, we compute d = gcd(|xi − xj|, n), where
j is the last subscript that is a power of 2, if 1 < d < n we have found a non-trivial factor
of n. If, on the other hand, d = n, we backtrack through the last power of two subsequence.
Here we will either find a non-trivial factor or the method will fail. The algorithm was coded
directly from the algorithm P ′′2 given on pages 182–183 of Brent’s original 1980 paper.

How to Use the Tool

1. Input the number to be factored into the Input box.

2. Input the starting value of the sequences, a.

3. Click the Factor button.

Options

• The base a is the starting value of the x sequence, the range for the base is 2 to
1,000,000.

• The program allows you to select between using g(x) = x2 + 1 (mod n) or g(x) =
a · x2 + b · x+ c (mod n), as the sequence generating function. With the more general
quadratic function you may select the coefficients of the terms to be any integer between
−1, 000, 000 to 1, 000, 000.

Cryptography Notes: Technology Guides 196



CHAPTER 3. INTRODUCTION TO CRYPTOGRAPHY EXPLORER

Figure 3.53: Brent’s Method Factoring Tool

Status Bar Information

Since factoring methods could take some time to complete, there is status bar information
that shows you if the method is making progress on factoring the number. On the far right
is the elapsed time and on the left is a display of the current iteration.

Notes

• The method does not find a complete prime factorization of n, even if it finds a factor.
So the factors in the output could still be composite.

• The range for the base, a, is 2 to 1,000,000.

• The each of the g(x) coefficients range from −1, 000, 000 to 1, 000, 000.

• The output of the factorization is in 3 forms. The first is as a product, the second is
a list format equivalent to the Maxima output of the ifactors command, and the last
is a list format equivalent to the Mathematica output of the FactorInteger command.
For example, when factoring 781930847130871 the output is,

Iterations: 1297
1819751 * 429691121
[[1819751,1], [429691121,1]]
{{1819751,1}, {429691121,1}}

Cryptography Notes: Technology Guides 197



CHAPTER 3. INTRODUCTION TO CRYPTOGRAPHY EXPLORER

Time: 0.046 sec.

• At the bottom of the output box is the amount of time used for the factoring operation.

• The iteration count is for each evaluation of the g(x) function. The algorithm also
uses Brent’s progressive reduction for calculating the GCD, so each iteration does not
include a complete GCD calculation.

• Factoring integers can be a lengthy process, the factoring operation is done in a separate
thread so that the user can use other facilities of the program while a factoring operation
is being completed.

• When the factoring operation is invoked, the Factor button will be changed to an Abort
button. To end the process simply click on the Abort button.

3.7.7 Quadratic Sieve Factoring

The Quadratic Sieve Factoring algorithm attempts to find two numbers x and y with 1 <
gcd(x − y, n) < n. This is done by finding a set of values x such that x2 (mod n) factors
completely using only small prime numbers (the set of small primes is called the Prime Base).
Then combinations of these are then multiplied together to get an expression of the form
x2 ≡ y2 (mod n). If x is not congruent to y or −y modulo n the gcd(x− y, n) will produce
a non-trivial factor of n. As a small example, say we have four primes in our prime base, p,
q, r and s. Say we find three numbers a, b, and c with a2 = p3rs2, b2 = pq3rs5, c2 = q7s all
modulo n. Then (abc)2 = p4q10r2s8 = (p2q5rs4)2. We would let x = abc and y = p2q5rs4,
then if x is not y or −y modulo n we calculate gcd(x− y, n) to obtain a non-trivial factor.

This tool has two modes to find possible numbers whose squares will produce a small
prime factorizations. The first follows the classical quadratic sieve method. A nice descrip-
tion of the algorithm can be found in Robert Silverman’s 1987 paper The Multiple Polynomial
Quadratic Sieve which was published in the journal Mathematics of Computation, Volume
48, Issue 177, pages 329–339.

We will not go into the entire algorithm here, please see the Silverman paper, but we
will give a quick outline. The program uses a sieving method to quickly pick out values x
that are likely to produce small prime factorizations of the values (x+ b

√
nc)2 − n. It then

computes (x + b
√
nc)2 − n and then factors the number, using the brute force method on

the primes in the prime base. If the factorization completes, the number and factorization
are then taken to the next stage to determine if a dependency, and then a factor, is found.

The second method actually skips the sieving step of the classical algorithm. It considers
numbers of the form, b

√
in + jc, i is called the multiplier and j is called the adder. When

the program runs it starts i and j at one, and increments j by one for each new trial number.
When j exceeds the maximum adder number, which is an option in this program, it resets
j to 1 and increments i by 1. Each of the numbers are then squared and factored, using
the brute force method on the primes in the prime base. If the factorization completes, the
number and factorization are then taken to the next stage to determine if a dependency, and
then a factor, is found.

Cryptography Notes: Technology Guides 198



CHAPTER 3. INTRODUCTION TO CRYPTOGRAPHY EXPLORER

Figure 3.54: Quadratic Sieve Factoring Tool: Classical Sieve

How to Use the Tool

1. Input the number to be factored into the Input box.

2. Select the mode of operation for the sieve. The [sqrt(N)]+j is the classical method
and the [sqrt(iN)]+j is the method that skips the sieving step.

3. Input the bound on the size of the prime base. This number represents the number of
primes in the prime base. Also input the other parameters the method needs, these
will be discussed below.

4. Click the Factor button.

Options

• In classical mode you need to specify M and the sieve test %. M is the size of the
sieving array used to pretest factorizations. The program will start with the interval
[−M,M ], if more small prime factorizations are needed it will increase the interval
to [−2M, 2M ], then [−3M, 3M ] and so on until a factorization of n is found. Each

Cryptography Notes: Technology Guides 199



CHAPTER 3. INTRODUCTION TO CRYPTOGRAPHY EXPLORER

Figure 3.55: Quadratic Sieve Factoring Tool: Alternative Method

entry position of the sieving array represents a number of the form (x + b
√
nc)2 − n

and the value in that entry represents a scale of the likelihood of the number having
a small prime factorization. Theoretically, if an entry has a particular value then the
associated number will factor into small primes. In practice, using this number will
miss a considerable number of small prime factorizations, so we also test positions
that are slightly less than the theoretical bound. So the Sieve Test % is the % of the
theoretical bound we will accept as having a possible small prime factorization and
send it on to the factorization routine. The larger this number is the more small prime
factorizations that you will miss, slowing down the progress toward finding a factor
of n and setting this number too low will attempt to factor more numbers that will
not have a small prime factorization, again making the program do more work and
slowing the progress toward factoring n. Empirically, a setting around 75 to 80 seems
to produce the best times on the numbers we tested.

• In the sieve skip mode you need to specify the maximum adder, j, that is used. When
j exceeds this value it is reset to 1 and the value of i is increased by 1.

• The prime base is the number of primes used in the small prime factorizations. For

Cryptography Notes: Technology Guides 200



CHAPTER 3. INTRODUCTION TO CRYPTOGRAPHY EXPLORER

the non-classical method this is simply the first so many primes, that is, if the prime
base size is set to 100 it will use the first 100 primes. With the classical method, we
can skip several primes that will not be of use to us and use all the primes p such that
the Jacobi symbol of n and p is 1.

• The prime base size, the adder bound and the sieve array size M are all in the range
of 2 to 1,000,000. The Sieve Test % is in the range of 0 to 100.

Status Bar Information

Since factoring methods could take some time to complete, there is status bar information
that shows you if the method is making progress on factoring the number. On the far right
is the elapsed time and on the left is a display of the number of trial numbers used, the
number of small prime factorizations, and the number of mod 2 dependency relations found.

Notes

• The method does not find a complete prime factorization of n, even if it finds a factor.
So the factors in the output could still be composite.

• The prime base size and the adder bound are both in the range of 2 to 1,000,000.

• The output of the factorization is in 3 forms. The first is as a product, the second is
a list format equivalent to the Maxima output of the ifactors command, and the last
is a list format equivalent to the Mathematica output of the FactorInteger command.
For example, when factoring 781930847130871 the output is,

Number of Primes in Base = 53
Number of Trial Numbers = 25685
Number of Small Prime Factorizations = 115
Number of Dependency Relations = 74
429691121 * 1819751
[[429691121,1], [1819751,1]]
{{429691121,1}, {1819751,1}}
Time: 0.188 sec.

• At the bottom of the output box is the amount of time used for the factoring operation.

• The output also has several benchmark numbers to let you know how much work was
done in each area of the algorithm.

Number of Primes in Base: Tells you the size of the prime base used for the fac-
torizations.

Cryptography Notes: Technology Guides 201



CHAPTER 3. INTRODUCTION TO CRYPTOGRAPHY EXPLORER

Number of Trial Numbers: Tells you the total number of numbers that the pro-
gram factored using the prime base. If the number factored within the prime
base the factorization is taken to the next stage of the algorithm, if it did not
factor within the prime base the next trial number is calculated and the process
continues.

Number of Small Prime Factorizations: Tells you the number of factorizations
that were completed within the prime base. Each of these are then checked with
the current set of independent factorizations to find a mod two dependency among
the exponents of the factorizations. If the relation turns out to be dependent, the
final stage of the algorithm is done, and if the new factorization is independent
of the current ones it is added to the independent set and the process resumes
with the next trial number. Dependency relations are calculated using Gaussian
elimination on the matrix constructed from the exponent parity vectors of the
small prime factorizations.

Number of Dependency Relations: This is the number of modulo 2 exponent de-
pendencies that were found. For each of these, x and y are calculated from the
dependency relation, x and y are checked if they are equal or opposite mod n and
finally, if applicable, the gcd(x− y, n) is calculated to find a non-trivial factor of
n.

• Factoring integers can be a lengthy process, the factoring operation is done in a separate
thread so that the user can use other facilities of the program while a factoring operation
is being completed.

• When the factoring operation is invoked, the Factor button will be changed to an Abort
button. To end the process simply click on the Abort button.

3.7.8 Multiple Polynomial Quadratic Sieve Factoring

The Multiple Polynomial Quadratic Sieve algorithm, like the Quadratic Sieve Factoring
algorithm, attempts to find two numbers x and y with 1 < gcd(x − y, n) < n. This is
done by finding a set of values x such that x2 (mod n) factors completely using only small
prime numbers (the set of small primes is called the Prime Base). Then combinations of
these are then multiplied together to get an expression of the form x2 ≡ y2 (mod n). If x
is not congruent to y or −y modulo n the gcd(x− y, n) will produce a non-trivial factor of
n. As a small example, say we have four primes in our prime base, p, q, r and s. Say we
find three numbers a, b, and c with a2 = p3rs2, b2 = pq3rs5, c2 = q7s all modulo n. Then
(abc)2 = p4q10r2s8 = (p2q5rs4)2. We would let x = abc and y = p2q5rs4, then if x is not y or
−y modulo n we calculate gcd(x− y, n) to obtain a non-trivial factor.

A nice description of the algorithm can be found in Robert Silverman’s 1987 paper The
Multiple Polynomial Quadratic Sieve which was published in the journal Mathematics of
Computation, Volume 48, Issue 177, pages 329–339.

We will not go into the entire algorithm here, please see the Silverman paper, but we
will give a quick outline. The program uses a sieving method to quickly pick out values x

Cryptography Notes: Technology Guides 202



CHAPTER 3. INTRODUCTION TO CRYPTOGRAPHY EXPLORER

that are likely to produce small prime factorizations of the values (ax2 + bx + c)2 modulo
n. It then computes (ax2 + bx+ c)2 (mod n) and then factors the number, using the brute
force method on the primes in the prime base. If the factorization completes, the number
and factorization are then taken to the next stage to determine if a dependency, and then a
factor, is found.

Figure 3.56: Multiple Polynomial Quadratic Sieve Factoring Tool

How to Use the Tool

1. Input the number to be factored into the Input box.

2. Select the size of the prime base, this number represents the number of primes in the
prime base.

3. Select the length of the sieving interval [−M,M ].

4. Click the Factor button.

Options

• M is the size of the sieving array used to pretest factorizations.

Cryptography Notes: Technology Guides 203



CHAPTER 3. INTRODUCTION TO CRYPTOGRAPHY EXPLORER

• The prime base is the number of primes used in the small prime factorizations. Not
all consecutive primes are used here. We can skip several primes that will not be of
use to us and use all the primes p such that the Jacobi symbol of n and p is 1.

• The prime base size and the sieve array size M are all in the range of 2 to 1,000,000.

Status Bar Information

Since factoring methods could take some time to complete, there is status bar information
that shows you if the method is making progress on factoring the number. On the far right is
the elapsed time and on the left is a display of the number of polynomials used, the number
of trial numbers used, the number of small prime factorizations, and the number of mod 2
dependency relations found.

Notes

• The method does not find a complete prime factorization of n, even if it finds a factor.
So the factors in the output could still be composite.

• The output of the factorization is in 3 forms. The first is as a product, the second is
a list format equivalent to the Maxima output of the ifactors command, and the last
is a list format equivalent to the Mathematica output of the FactorInteger command.
For example, when factoring 781930847130871 the output is,

Number of Primes in Base = 100
Number of Polynomials = 194
Number of Trial Numbers = 388000
Number of Small Prime Factorizations = 90
Number of Dependency Relations = 3
429691121 * 1819751
[[429691121,1], [1819751,1]]
{{429691121,1}, {1819751,1}}
Time: 2.122 sec.

• At the bottom of the output box is the amount of time used for the factoring operation.

• The output also has several benchmark numbers to let you know how much work was
done in each area of the algorithm.

Number of Primes in Base: Tells you the size of the prime base used for the fac-
torizations.

Number of Trial Numbers: Tells you the total number of numbers that the pro-
gram factored using the prime base. If the number factored within the prime
base the factorization is taken to the next stage of the algorithm, if it did not
factor within the prime base the next trial number is calculated and the process
continues.

Cryptography Notes: Technology Guides 204



CHAPTER 3. INTRODUCTION TO CRYPTOGRAPHY EXPLORER

Number of Small Prime Factorizations: Tells you the number of factorizations
that were completed within the prime base. Each of these are then checked with
the current set of independent factorizations to find a mod two dependency among
the exponents of the factorizations. If the relation turns out to be dependent, the
final stage of the algorithm is done, and if the new factorization is independent
of the current ones it is added to the independent set and the process resumes
with the next trial number. Dependency relations are calculated using Gaussian
elimination on the matrix constructed from the exponent parity vectors of the
small prime factorizations.

Number of Dependency Relations: This is the number of modulo 2 exponent de-
pendencies that were found. For each of these, x and y are calculated from the
dependency relation, x and y are checked if they are equal or opposite mod n and
finally, if applicable, the gcd(x− y, n) is calculated to find a non-trivial factor of
n.

• Factoring integers can be a lengthy process, the factoring operation is done in a separate
thread so that the user can use other facilities of the program while a factoring operation
is being completed.

• When the factoring operation is invoked, the Factor button will be changed to an Abort
button. To end the process simply click on the Abort button.

3.7.9 Lenstra’s Elliptic Curve Factoring

The Lenstra’s Elliptic Curve Factoring algorithm takes an elliptic curve of the form y2 =
x3 + bx + c (mod n) and a point P on the curve, we then calculate m!P for increasingly
larger m. During the calculation of the slope, there may be a case where the slope cannot
be calculated due to a non-invertible number modulo n. When this occurs, the GCD of this
number and n is not 1 and hence could be a non-trivial factor of n. If so the program returns
this GCD, g, and n

g
.

The Lenstra’s Elliptic Curve Factoring tool has two modes of operation, the first, is where
the user can select a single elliptic curve and point on that curve and run the algorithm with
that point and curve. In practice, one usually selects several random elliptic curves but this
mode allows the user to experiment with particular curves and points. The second mode, is
to allow the computer to select any number of random elliptic curves and run the algorithm
on each.

How to Use the Tool

1. Input the number to be factored into the Input box.

2. Select the mode of operation and the parameters for that mode, these will be discussed
further below.

3. Click the Factor button.

Cryptography Notes: Technology Guides 205



CHAPTER 3. INTRODUCTION TO CRYPTOGRAPHY EXPLORER

Figure 3.57: Lenstra’s Elliptic Curve Factoring Tool

Options

Single Curve Mode —

• The point on the curve is P = (p, q), the numbers p and q must be input by the
user.

• The linear coefficient, b, of the elliptic curve, y2 = x3 + bx+ c (mod n), must be
input by the user. The program will take this information and calculate the value
of c so that the point P is on the curve. Note that if the calculated curve has
multiple roots you will get a warning dialog that will allow you to either continue
with the calculation or terminate the calculation.

• The user can specify if a bailout is to be used and the size of the bailout. If the
user uses the bailout, when the bailout iteration is exceeded and no factor is found
the algorithm will halt with a failure message.

Random Curve Mode —

• In this mode the program will generate random curves and points for the algo-
rithm. The user can select to allow the program to run indefinitely or to limit the

Cryptography Notes: Technology Guides 206



CHAPTER 3. INTRODUCTION TO CRYPTOGRAPHY EXPLORER

Figure 3.58: Lenstra’s Elliptic Curve Factoring Tool

number of curves it uses.

• In this mode a bailout must be given. When the bailout iteration is exceeded for
a curve the program will continue (restart) with another point and curve.

Status Bar Information

Since factoring methods could take some time to complete, there is status bar information
that shows you if the method is making progress on factoring the number. On the far right
is the elapsed time and on the left is a display of the curve number and iteration.

Notes

• The method does not find a complete prime factorization of n, even if it finds a factor.
So the factors in the output could still be composite.

• The bailout values are in the range of 5 to 1,000,000.

Cryptography Notes: Technology Guides 207



CHAPTER 3. INTRODUCTION TO CRYPTOGRAPHY EXPLORER

• The number of curves has a range of 1 to 1,000,000.

• The output of the factorization is in 3 forms. The first is as a product, the second is
a list format equivalent to the Maxima output of the ifactors command, and the last
is a list format equivalent to the Mathematica output of the FactorInteger command.
For example, when factoring 781930847130871 the output is,

Iterations: 619!
Number of Curves Examined: 3
Curve: yˆ2 = xˆ3 + 325191091533488x + 443604025114081
1819751 * 429691121
[[1819751,1], [429691121,1]]
{{1819751,1}, {429691121,1}}
Time: 0.234 sec.

• At the bottom of the output box is the amount of time used for the factoring operation.

• The output also has several benchmark numbers to let you know how much work was
done by the algorithm.

– In one curve mode the output includes the number of iterations the program did
with the curve and the curve itself.

– In random curve mode, the output includes the number of curves that were ex-
amined along with the last curve used and the number of iterations needed for
that curve to factor n.

• Factoring integers can be a lengthy process, the factoring operation is done in a separate
thread so that the user can use other facilities of the program while a factoring operation
is being completed.

• When the factoring operation is invoked, the Factor button will be changed to an Abort
button. To end the process simply click on the Abort button.

• Calculation of m!P is done by the progression of calculations, 2P , 3(2P ), 4(3!P ),
5(4!P ), . . . , m((m− 1)!P ).

3.7.10 Multiple Factoring Methods

The Multiple Factoring Methods tool will factor an integer into its prime factor decomposi-
tion using a combination of various methods. The methods used can be found on the Options
tab, they are applied in order of their listing. This tool allows the user to experiment with
different factoring methods in combination with each other. It can be used as a general
integer factoring tool but it is not as efficient as those found in most available computer
algebra systems, such as Mathematica, Maxima, or Maple.

Cryptography Notes: Technology Guides 208



CHAPTER 3. INTRODUCTION TO CRYPTOGRAPHY EXPLORER

Figure 3.59: Multiple Factoring Methods Tool

Figure 3.60: Multiple Factoring Methods Tool Options

How to Use the Tool

1. Input the number to be factored into the Input box.

Cryptography Notes: Technology Guides 209



CHAPTER 3. INTRODUCTION TO CRYPTOGRAPHY EXPLORER

2. Select the Options tab and alter the method options, if desired.

3. Click the Factor button.

Options

• All Methods can be either selected or deselected form use by checking or unchecking
the Use check box in the method’s option section.

• When any method finds a factor, the new factors are checked to see if they are prime
or composite. If a factor is prime (that is probably prime with failure probability less
than 2−100) they are stored for final output and if they are composite the method is
restarted on all composite factors.

• If a complete factorization is found at any time the current method halts and all
subsequent methods are skipped.

Method Options

Brute Force Options —

Maximum Trial Divisor: This is the largest number that is used as a trial divisor
before moving onto the next method.

Brent’s Method Options —

Maximum Number of Iterations: This is the largest number of iterations that will
be done using Brent’s method.

Pollard p− 1 Method Options —

Maximum Exponent: This is the largest exponent used for Pollard’s p− 1 method.
This number is a factorial and corresponds to the number or iterations done in
the process.

Williams p+ 1 Method Options —

Max. Base: This is the largest number used for the seed of the Lucas sequence. The
program will try each seed from 3 to this number.

Iteration Bailout: This is the largest number of terms of the Lucas sequence that
will be calculated. This number is a factorial and corresponds to the number or
iterations done in the process.

Lenstra’s Elliptic Curve Options —

Number of Curves: This is the largest number of randomly generated elliptic curves
used in the process.

Cryptography Notes: Technology Guides 210



CHAPTER 3. INTRODUCTION TO CRYPTOGRAPHY EXPLORER

Bailout at: This is the largest number of points that will be calculated for each curve.
This number is a factorial and corresponds to the number or iterations done in
the process.

Quadratic Sieve Options —

Prime Base: This is the number of primes in the prime base for the sieve. This tool
uses the classical sieve, so all primes have Jacobi symbol 1 with n.

M: This is the size of the sieving array.

Max. k: This is the maximum multiple of M that is used for the the sieving array.
So the sieve array starts at [−M,M ] and proceeds up to [−kM, kM ] until a factor
is found.

Sieve Test %: This is the percentage of the theoretical bound used to determine a
possible small prime factorization.

Status Bar Information

Since each factoring method could take some time to complete, there is status bar information
that shows you if the method is making progress on factoring the number. Each method
has different information displayed but all methods have the elapsed time to the right and
PF: ## CF: ## on the left. The PF stands for prime factors and is the number of prime
factors found up to this point. The CF stands for composite factors and is the number of
composite factors found up to this point. The other information is in the center of the status
bar and depends on the current method being used.

Brute Force: Displays the current trial divisor being tested.

Brent’s Method: Displays the current iteration.

Pollard p− 1 Method: Displays the current iteration.

Williams p+ 1 Method: Displays the current base and iteration on that base.

Lenstra’s Elliptic Curve: Displays the curve number and iteration.

Quadratic Sieve: Displays the number of trial numbers used (TN), the number of small
prime factorizations (SPF), and the number of mod 2 dependency relations found
(DR).

Notes

• If there is a composite number that was not able to be factored using the selected
methods with the selected parameters it will be enclosed in parentheses in the final
output.

Cryptography Notes: Technology Guides 211



CHAPTER 3. INTRODUCTION TO CRYPTOGRAPHY EXPLORER

• The output of the factorization is in 4 forms. The first is an expanded multiplication,
the second is a product expression with powers, the third is a list format equivalent to
the Maxima output of the ifactors command, and the last is a list format equivalent to
the Mathematica output of the FactorInteger command. For example, when factoring
11110988889 the output is,

3 * 3 * 3 * 7 * 11 * 13 * 37 * 41 * 271
3ˆ3 * 7 * 11 * 13 * 37 * 41 * 271
[[3,3], [7,1], [11,1], [13,1], [37,1], [41,1], [271,1]]
{{3,3}, {7,1}, {11,1}, {13,1}, {37,1}, {41,1}, {271,1}}
Time: 0.047 sec.

• At the bottom of the output box is the amount of time used for the factoring operation.

• Factoring integers can be a lengthy process, the factoring operation is done in a separate
thread so that the user can use other facilities of the program while a factoring operation
is being completed.

• When the factoring operation is invoked, the Factor button will be changed to an Abort
button. To end the process simply click on the Abort button.

3.8 Discrete Logarithm Tools

3.8.1 Brute Force Discrete Logarithm

The Brute Force Discrete Logarithm tool will solve the discrete log problem of b = ax

(mod n) given integers a, b, and n. The method simply tries all possible exponents x until
a solution is found or it is determined that a solution does not exist.

How to Use the Tool

1. Input the numbers a, b, and n.

2. Click the Solve button.

Options

• The modulus, n, has options for determining the next probable prime and for testing
if n is a probable prime. The value of n need not be prime for the program to run.

• The base, a, has the option to determine if it is a primitive root modulo n. In this
case, n, must be a prime number. The determination of a primitive root depends on
the factorization of the totient of n, and hence can be a lengthy process if n is a large
prime number. The value of a need not be a primitive root for the program to run.

Cryptography Notes: Technology Guides 212



CHAPTER 3. INTRODUCTION TO CRYPTOGRAPHY EXPLORER

Figure 3.61: Brute Force Discrete Logarithm Tool

Status Bar Information

Since discrete log methods could take some time to complete, there is status bar information
that shows you if the method is making progress. On the far right is the elapsed time and
on the left is a display of the current exponent being tested.

Notes

• Solving discrete log problems can be a lengthy process, the operation is done in a
separate thread so that the user can use other facilities of the program while the
operation is being completed.

• When the solving operation is invoked, the Solve button will be changed to an Abort
button. To end the process simply click on the Abort button.

3.8.2 Pohlig-Hellman Discrete Logarithm

The Pohlig-Hellman Discrete Logarithm tool uses the Pohlig-Hellman algorithm to solve
the discrete log problem of b = ax (mod p) given integers a, b, and p. For this tool, the
modulus n must be prime and the base a must be a primitive root modulo p. Recall that
the Pohlig-Hellman algorithm is efficient if p− 1 factors into a product of small primes.

How to Use the Tool

1. Input the numbers a, b, and p.

2. Click the Solve button.

Cryptography Notes: Technology Guides 213



CHAPTER 3. INTRODUCTION TO CRYPTOGRAPHY EXPLORER

Figure 3.62: Pohlig-Hellman Discrete Logarithm Tool

Options

• The modulus, p, has options for determining the next probable prime and for testing
if p is a probable prime. The value of p must be prime for the program to run.

• The base, a, has the option to determine if it is a primitive root modulo p. In this
case, p, must be a prime number. The determination of a primitive root depends on
the factorization of the totient of p, and hence can be a lengthy process if p is a large
prime number. The value of a must be a primitive root for the program to run.

Status Bar Information

Since discrete log methods could take some time to complete, there is status bar information
that shows you if the method is making progress. On the far right is the elapsed time. On
the left is a display similar to the following.

Prime #3/5: 121259 Round: #2/3 Exponent: 23442

This means that there are 5 distinct primes in the factorization of p−1, and the program
is currently working on the third prime, which is 121259. The Round indicates that in the
factorization of p − 1 there was a factor of 1212593, so the program must run through 3
total rounds and it is currently on the second one. In that round, the exponent multiplier is
currently 23442. Recall from the Pohlig-Hellman algorithm that each round might need to
go through all the exponents up to the size of the prime being considered. So if the prime
is large, p− 1 did not factor into small primes, and the Pohlig-Hellman algorithm may not
find a solution in a reasonable amount of time.

Cryptography Notes: Technology Guides 214



CHAPTER 3. INTRODUCTION TO CRYPTOGRAPHY EXPLORER

Notes

• In the status bar, the primes that are listed are sorted into increasing order. So in the
above example, the two remaining primes are larger than 121259.

• Solving discrete log problems can be a lengthy process, the operation is done in a
separate thread so that the user can use other facilities of the program while the
operation is being completed.

• When the solving operation is invoked, the Solve button will be changed to an Abort
button. To end the process simply click on the Abort button.

3.8.3 Pollard Rho Discrete Logarithm

The Pollard Rho Discrete Logarithm tool uses the Pollard Rho algorithm for discrete logs
to solve the discrete log problem of b = ax (mod p) given integers a, b, and p. For this tool,
the modulus p must be prime and the base a should be a primitive root modulo p, although
the program will not force this second criteria.

Figure 3.63: Pollard Rho Discrete Logarithm Tool

How to Use the Tool

1. Input the numbers a, b, and p.

2. Click the Solve button.

Cryptography Notes: Technology Guides 215



CHAPTER 3. INTRODUCTION TO CRYPTOGRAPHY EXPLORER

Options

• The modulus, p, has options for determining the next probable prime and for testing
if p is a probable prime. The value of p must be prime for the program to run.

• The base, a, has the option to determine if it is a primitive root modulo p. In this
case, p, must be a prime number. The determination of a primitive root depends on
the factorization of the totient of p, and hence can be a lengthy process if p is a large
prime number.

Status Bar Information

Since discrete log methods could take some time to complete, there is status bar information
that shows you if the method is making progress. On the far right is the elapsed time. On
the left is a display of the current iteration.

Notes

• Solving discrete log problems can be a lengthy process, the operation is done in a
separate thread so that the user can use other facilities of the program while the
operation is being completed.

• When the solving operation is invoked, the Solve button will be changed to an Abort
button. To end the process simply click on the Abort button.

3.8.4 Pohlig-Hellman with Pollard Rho Discrete Logarithm

The Pohlig-Hellman with Pollard Rho Discrete Logarithm tool uses the Pohlig-Hellman
algorithm to solve the discrete log problem of b = ax (mod p) given integers a, b, and p.
In the classical Pohlig-Hellman algorithm a brute force algorithm is used to solve smaller
discrete logarithm problems. In the version that brute force portion is replaced with the
faster Pollard Rho algorithm. For this tool, the modulus p must be prime and the base a
must be a primitive root modulo p. Recall that the Pohlig-Hellman algorithm is efficient if
p− 1 factors into a product of small primes.

How to Use the Tool

1. Input the numbers a, b, and p.

2. Click the Solve button.

Options

• The modulus, p, has options for determining the next probable prime and for testing
if p is a probable prime. The value of p must be prime for the program to run.

Cryptography Notes: Technology Guides 216



CHAPTER 3. INTRODUCTION TO CRYPTOGRAPHY EXPLORER

Figure 3.64: Pohlig-Hellman with Pollard Rho Discrete Logarithm Tool

• The base, a, has the option to determine if it is a primitive root modulo p. In this
case, p, must be a prime number. The determination of a primitive root depends on
the factorization of the totient of p, and hence can be a lengthy process if p is a large
prime number. The value of a must be a primitive root for the program to run.

Status Bar Information

Since discrete log methods could take some time to complete, there is status bar information
that shows you if the method is making progress. On the far right is the elapsed time. On
the left is a display similar to the following.

Prime #3/5: 121259 Round: #2/3 Exponent: 23442

or

Prime #3/5: 121259 Round: #2/3 Iteration: 23442

This means that there are 5 distinct primes in the factorization of p−1, and the program
is currently working on the third prime, which is 121259. The Round indicates that in the
factorization of p − 1 there was a factor of 1212593, so the program must run through 3
total rounds and it is currently on the second one. In that round, the exponent multiplier
or Pollard Rho iteration is currently 23442. If the prime is less than 10,000 brute force is
used for the smaller logarithms and if it is larger then the Pollard Rho algorithm is used. If
the prime is large, and p− 1 did not factor into relatively small primes, the Pohlig-Hellman
algorithm may not find a solution in a reasonable amount of time.

Cryptography Notes: Technology Guides 217



CHAPTER 3. INTRODUCTION TO CRYPTOGRAPHY EXPLORER

Notes

• In the status bar, the primes that are listed are sorted into increasing order. So in the
above example, the two remaining primes are larger than 121259.

• Solving discrete log problems can be a lengthy process, the operation is done in a
separate thread so that the user can use other facilities of the program while the
operation is being completed.

• When the solving operation is invoked, the Solve button will be changed to an Abort
button. To end the process simply click on the Abort button.

3.8.5 Index Calculus Discrete Logarithm

The Index Calculus Discrete Logarithm tool uses the Index Calculus algorithm to solve the
discrete log problem of b = ax (mod p) given integers a, b, and p. For this tool, the modulus
p must be prime and the base a should be a primitive root modulo p, although the program
will not force this second criteria.

The program will first use small prime factorizations and solving of the linear systems of
the exponents to find the discrete logarithms base a of each prime in the prime base modulo
p. Then it will calculate ar · b (mod p) for various r until the number factors in the prime
base and then using the small prime logarithms it will calculate the x that solves b = ax

(mod p).

Figure 3.65: Index Calculus Discrete Logarithm Tool

Cryptography Notes: Technology Guides 218



CHAPTER 3. INTRODUCTION TO CRYPTOGRAPHY EXPLORER

How to Use the Tool

1. Input the numbers a, b, and p.

2. Input the size of the prime base.

3. Click the Solve button.

Options

• The modulus, p, has options for determining the next probable prime and for testing
if p is a probable prime. The value of p must be prime for the program to run.

• The base, a, has the option to determine if it is a primitive root modulo p. In this
case, p, must be a prime number. The determination of a primitive root depends on
the factorization of the totient of p, and hence can be a lengthy process if p is a large
prime number.

Status Bar Information

Since discrete log methods could take some time to complete, there is status bar information
that shows you if the method is making progress. On the far right is the elapsed time. On
the left is a display of the current exponent and the number of small prime factorizations
found.

Notes

• Solving discrete log problems can be a lengthy process, the operation is done in a
separate thread so that the user can use other facilities of the program while the
operation is being completed.

• When the solving operation is invoked, the Solve button will be changed to an Abort
button. To end the process simply click on the Abort button.

3.8.6 Variant of the Index Calculus Discrete Logarithm

The Index Calculus Discrete Logarithm tool uses the Index Calculus algorithm to solve the
discrete log problem of b = ax (mod p) given integers a, b, and p. For this tool, the modulus
p must be prime and the base a should be a primitive root modulo p, although the program
will not force this second criteria.

This method uses the same process as the classical index calculus algorithm except that
it rearranges the process and in most cases it is able to solve the discrete logarithm using
fewer steps, and hence faster. In the worst case, it may run slower than the classical index
calculus algorithm due to the overhead in checking for partial solutions and matrix resizing.

The program will first calculate ar · b (mod p) for various r until the number factors in
the prime base. The program will then use small prime factorizations of as (mod p), for

Cryptography Notes: Technology Guides 219



CHAPTER 3. INTRODUCTION TO CRYPTOGRAPHY EXPLORER

increasing values of s, and solving of the linear systems of the exponents to find the discrete
logarithms base a of each prime in the prime base modulo p. During this process, the
program will check for any new logarithm solutions to the primes in the prime base. Once
the logarithms of the primes in the factorization of ar · b (mod p) are found the program
can quickly calculate the solution to b = ax (mod p) without the solutions to the remaining
primes in the prime base and it does so. If a new prime base logarithm is found but the
program does not have enough information to calculate the final solution, the program will
store the new solution and reduce the size of the linear system, making the reduction phase
of the algorithm faster.

Figure 3.66: Variant of the Index Calculus Discrete Logarithm Tool

How to Use the Tool

1. Input the numbers a, b, and p.

2. Input the size of the prime base.

3. Click the Solve button.

Options

• The modulus, p, has options for determining the next probable prime and for testing
if p is a probable prime. The value of p must be prime for the program to run.

• The base, a, has the option to determine if it is a primitive root modulo p. In this
case, p, must be a prime number. The determination of a primitive root depends on
the factorization of the totient of p, and hence can be a lengthy process if p is a large
prime number.

Cryptography Notes: Technology Guides 220



CHAPTER 3. INTRODUCTION TO CRYPTOGRAPHY EXPLORER

Status Bar Information

Since discrete log methods could take some time to complete, there is status bar information
that shows you if the method is making progress. On the far right is the elapsed time. On
the left is a display of the current exponent and the number of small prime factorizations
found.

Notes

• Solving discrete log problems can be a lengthy process, the operation is done in a
separate thread so that the user can use other facilities of the program while the
operation is being completed.

• When the solving operation is invoked, the Solve button will be changed to an Abort
button. To end the process simply click on the Abort button.

Cryptography Notes: Technology Guides 221



Bibliography

[1] O. I. Franksen. Mr. Babbage’s Secret: the Tale of a Cipher—and APL. Prentice Hall,
1985.

[2] F. W. Kasiski. Die Geheimschriften und die Dechiffrir-Kunst. E. S. Mittler und Sohn,
Berlin, 1863.

[3] Maxima. Maxima, a Computer Algebra System.
http://maxima.sourceforge.net/, 2014. [Online; accessed January 2, 2014].

[4] Wolfram. Mathematica.
http://www.wolfram.com/, 2014. [Online; accessed January 2, 2014].

222

http://maxima.sourceforge.net/
http://www.wolfram.com/


Index

ADFGVX Cipher, 139
ADFGX Cipher, 136
Adlemen, Leonard, 149
Affine Cipher, 114

Babbage, Charles, 157
Bellaso, Giovan Battista, 115
Blum-Blum-Shub Algorithm, 188
Brent’s Method Factoring, 196
Brute Force Discrete Logarithm, 212
Brute Force Factoring, 188

Caesar Shift Cipher, 114
Chinese Remainder Theorem, 178
Classical Columnar, 120
Cocks, Clifford, 149
Coincidence Analysis, 159
Columnar Cipher, 120
Cryptography Explorer, 108

Affine Cipher, 114
Arithmetic, 177
Bar Charts, 111
Chinese Remainder Theorem, 178
Classical Columnar, 120
Discrete Logarithm, 179
Double Factorial, 178
Euler Phi, 179
Euler Totient, 179
Evaluate, 180
Expression Syntax, 180
Factor, 179
Factorial, 178
GCD, 178
Index Calculus, 180

Input and Output Boxes, 109
Integer Calculator Functions, 177
Introduction, 108
Is Prime, 179
Is Primitive Root, 179
Jacobi Symbol, 179
Kama-Sutra Cipher, 114
Modular Arithmetic, 178
Myszkowski Method Columnar, 121
Next Prime, 179
Nth Prime, 179
Pi(n), 179
Pohlig-Hellman/Pollard Rho, 179
Previous Prime, 179
Prime Number Functions, 179
Primitive Root, 179
Print Preview, 110
Program Layout, 108
Quick Help Bar, 109
Random Substitution Cipher, 114
Semiprime, 179
Shift Cipher, 114
Square Root, 178
Text Conversion Options, 166
Tools

ADFGVX, 139
ADFGX, 136
Brent’s Method Factoring, 196
Brute Force Discrete Logarithm, 212
Brute Force Factoring, 188
Coincidence Analysis, 159
Columnar, 120
Dot Product Analysis, 160

223



Index

ElGamal, 151
Elliptic Curve Calculator, 184
Enigma, 147
Factoring, 208
Fermat Factoring, 190
Four Square, 127
Frequency Analysis, 153
Gridpad, 173
Hill, 143
Hill Climbing Analysis, 155
Index Calculus Discrete Logarithm,

218
Integer Calculator, 177
Kasiski’s Method, 157
Lenstra’s Elliptic Curve Factoring,

205
LFSR Cipher Analysis, 162
Linear Feedback Shift Register

(LFSR), 142
Modular Matrix Calculator, 181
Monoalphabetic Substitution, 112
Multiple Polynomial Quadratic Sieve

Factoring, 202
Notepad, 173
Playfair, 132
Pohlig-Hellman Discrete Logarithm,

213
Pohlig-Hellman with Pollard Rho

Discrete Logarithm, 216
Pollard p− 1 Factoring, 191
Pollard Rho Discrete Logarithm, 215
Pollard Rho Factoring, 194
Quadratic Sieve Factoring, 198
Rail Fence, 119
Random Number Generator, 187
RSA, 149
Scytale, 118
Substring Compare, 161
Text Combiner, 165
Text Converter, 166
Text Extractor, 164
Two Square, 123
User Defined Language Creator, 175

Variant of the Index Calculus Discrete
Logarithm, 219

Vigenère, 115
Williams p+ 1 Factoring, 193

Vigenère Ciphertext Autokey, 116
Vigenère Plaintext Autokey, 115
Vigenère Repeated Keyword, 115

Diffe, Whitfield, 149
Dot Product Analysis, 160
Double Factorial, 178

ElGamal Cipher, 151
ElGamal, Taher, 151
Enigma Cipher, 147
Enigma Machine Rotor and Reflector

Wirings, 148
Euler Phi, 179
Euler Totient, 179

Factorial, 178
Factoring, 208
Fermat Factoring, 190
Four Square Cipher, 127
Frequency Analysis, 153

Government Communications Headquarters
(GCHQ), 149

Hellman, Martin, 149
Hill Cipher, 143
Hill Climbing Analysis, 155
Hill, Lester, 143

Index Calculus Discrete Logarithm
Algorithm, 218

Jacobi Symbol, 179

Kama-Sutra Cipher, 114
Kasiski’s Method, 157
Kasiski, Friedrich, 157

Lenstra’s Elliptic Curve Factoring, 205
Lenstra’s Elliptic Curve Factoring

Algorithm, 205

Cryptography Notes: Technology Guides 224



Index

LFSR, 142
LFSR Cipher Analysis, 162
Linear Congruential Algorithm, 187
Linear Feedback Shift Register, 142

Mathematica, iii, 1
Algebra, 9
Arithmetic on an Elliptic Curve, 41
Assignment, 9
Brackets and Parentheses, 4
Chinese Remainder Theorem, 16
Command Color Coding, 6
Commands

., 31
//, 8
:=, 9, 12
;;, 21, 29
=, 9
=., 9
[[]], 28
AbsoluteTiming, 11
All, 29
ChineseRemainder, 16
Clear, 9
ContinuedFraction, 19
Convergents, 21
Det, 32
EulerPhi, 24
ExtendedGCD, 15
FactorInteger, 23
FromContinuedFraction, 20
FromContinuedFractionN, 21
FullSimplify, 10
GCD, 15
Inverse, 32, 34
JacobiSymbol, 18
Join, 30
LCM, 16
MatrixForm, 27
MatrixPower, 32
Mod, 14, 34
Modulus, 35
MultiplicativeOrder, 25, 26
N, 8

NextPrime, 17
PowerMod, 15
PrimeQ, 17
PrimitiveRoot, 25
PrimitiveRootList, 25
PrimitiveRootQ, 26
RowReduce, 33, 35
Simplify, 10
Solve, 22
Table, 30
Timing, 11

Continued Fractions, 19
CryptDSEC.nb, 44
CryptDSEC.nb Code, 45
Defining Functions, 12
Delayed Assignment, 9
Discrete Logarithms, 26
Element Orders, 25
Elliptic Curves, 36
Euler Totient Function, 24
Execution Timing, 11
Extended Greatest Common Divisor, 15
Factoring, 23
Factoring Polynomials, 24
Factoring Polynomials Modulo a Prime,

24
Greatest Common Divisor, 15
Immediate Assignment, 9
Jacobi and Legendre Symbols, 18
Juxtaposition, 10
kernel, 2
Least Common Multiple, 16
Matrix Arithmetic, 31
Matrix Reduction, 33
Modular Inverses, 15
Modular Matrix Operations, 34
Modular Powers, 14
Modulus, 14
Number Theory, 14
Numeric Calculations, 7
Palettes, 5
Points on an Elliptic Curve, 37
Primes, 17

Cryptography Notes: Technology Guides 225



Index

Primitive Roots, 25
Resetting Assignments, 9
Solving Equations, 22
User Interface, 2
Vectors and Matrices, 27
www.wolfram.com, 1

Maxima, iii, 48
Aborting a Calculation, 53
Adjugate, 89
Arithmetic on an Elliptic Curve, 101
ASCII Mode, 55
Brackets and Parentheses, 52
Chinese Remainder Theorem, 64
Classical Adjoint, 89
Commands

%, 51
addcol, 78
addrow, 78
bfloat, 54
cf, 68
cfdisrep, 68
cflength, 68
chinese, 64
col, 78
columnvector, 77
copymatrix, 83
covect, 77
determinant, 84
echelon, 86
ezgcd, 63
factor, 73
float, 54
fpprec, 55
from cf, 69
from cf n, 69
gcd, 62
gcdex, 63
gf sqrt, 72
ifactors, 73
igcdex, 63
inv mod, 62
invert, 84
jacobi, 66

lcm, 64
mat mod inverse, 91
matrix, 77
minor, 80
mod, 61
mod echelon, 93
mod rref, 93
Modulus, 22
modulus, 71
msqrt, 72
next prime, 65
numer, 54
power mod, 62
prev prime, 65
primep, 64
primep number of tests, 64
ratsimp, 56, 68
row, 78
rref, 88
set display, 55
ssqrt, 72
submatrix, 80
totient, 74
transpose, 77
triangularize, 86
zn log, 75
zn order, 76
zn primroot, 74

Continued Fractions, 67
CryptDS.mac, 105
CryptDS.mac Code, 105
Defining a Matrix, 77
Defining Functions, 57
Discrete Logarithms, 75
eigen Package, 77
Elliptic Curves, 98
engine, 50
Euler Totient Function, 74
Execution Timing, 57
Extended Greatest Common Divisor, 63
Factoring, 73
Factoring Polynomials, 73
Factoring Polynomials Modulo a Prime,

Cryptography Notes: Technology Guides 226



Index

73
gf Package, 72
Greatest Common Divisor, 62
In Lines, 50
Jacobi and Legendre Symbols, 66
Juxtaposition, 56
Least Common Multiple, 64
Lucas Pseudo-Primality Test, 64
Matrix Arithmetic, 84
maxima.sourceforge.net, 48
Miller-Rabin’s Pseudo-Primality Test,

64
Modular Computations, 61
Modular Inverses, 62
Modular Matrix Operations, 88
Modular Matrix Reduction, 91
Modular Powers, 61
Modular Roots, 72
None Mode, 55
Number Theory, 61
Numeric Calculations, 53
Order of an Element, 76
Out Lines, 50
Panes, 53
Pohlig-Hellman, 75
Points on an Elliptic Curve, 98
Pollard’s Rho Method, 75
Primality Testing, 64
Prime Number Functions, 64
Primitive Roots, 74
Simplification, 56
Solving Equations, 70
User Interface, 50
Variable Assignment, 55
Vectors and Matrices, 77
wxMaxima, 50
XML Mode, 55

Monoalphabetic Substitution Cipher, 112

Multiple Polynomial Quadratic Sieve
Factoring, 202

Myszkowski Method Columnar, 121
Myszkowski, Emile Victor Théodore, 121

Nebel, Fritz, 136, 139

Playfair Cipher, 132
Playfair, Lyon, 132
Pohlig-Hellman Discrete Logarithm

Algorithm, 213
Pollard p− 1 Factoring, 191
Pollard Rho Discrete Logarithm Algorithm,

215
Pollard Rho Factoring, 194
Primitive Root, 179

Quadratic Sieve Factoring, 198

Rail Fence Cipher, 119
Random Substitution Cipher, 114
Rivest, Ron, 149
RSA Algorithm, 149
RSA Cipher, 149

Scytale Cipher, 118
Shamir, Adi, 149
Silverman, Robert, 198
Substring Compare, 161

Two Square Cipher, 123

Variant of the Index Calculus Discrete
Logarithm Algorithm, 219

Vigenère Cipher, 115
Vigenère Ciphertext Autokey, 116
Vigenère Plaintext Autokey, 115
Vigenère Repeated Keyword, 115
Vigenère, Blaise de, 115

Williams p+ 1 Factoring, 193

Cryptography Notes: Technology Guides 227


	Introduction to Mathematica
	What is Mathematica?
	The User Interface
	Basic Calculations
	Numeric Calculations
	Algebra
	Execution Timing

	Defining Functions
	Some Discrete Mathematics & Number Theory Commands
	Modulus
	Power Calculations with a Modulus
	Greatest Common Divisor
	Extended Greatest Common Divisor
	Least Common Multiple
	Chinese Remainder Theorem
	Functions for Primes
	Jacobi and Legendre Symbols
	Continued Fractions
	Solving Equations
	Factoring
	Factoring Polynomials
	Euler Totient Function
	Primitive Roots and Element Orders
	Discrete Logarithms

	Vectors and Matrices
	Defining a Matrix and a Vector
	Matrix Arithmetic
	Matrix Reduction
	Modular Matrix Operations

	Elliptic Curves
	Points on an Elliptic Curve
	Arithmetic on an Elliptic Curve

	CryptDSEC.nb
	CryptDSEC.nb Code


	Introduction to Maxima
	What is Maxima?
	The User Interface
	Basic Calculations
	Numeric Calculations
	Algebra
	Execution Timing

	Defining Functions
	Some Discrete Mathematics & Number Theory Commands
	Modulus
	Power Calculations with a Modulus
	Inverse Calculations with a Modulus
	Greatest Common Divisor
	Extended Greatest Common Divisor
	Greatest Common Divisor of Several Numbers
	Least Common Multiple
	Chinese Remainder Theorem
	Functions for Primes
	Jacobi and Legendre Symbols
	Continued Fractions
	Solving Equations
	Modular Square Roots and Cube Roots
	Factoring
	Factoring Polynomials
	Euler Totient Function
	Primitive Roots
	Discrete Logarithms
	Order of an Element

	Vectors and Matrices
	Defining a Matrix
	Matrix Arithmetic
	Matrix Reduction
	Modular Matrix Operations

	Elliptic Curves
	Points on an Elliptic Curve
	Arithmetic on an Elliptic Curve

	CryptDS.mac
	CryptDS.mac Code


	Introduction to Cryptography Explorer
	What is Cryptography Explorer?
	Introduction
	Ciphers
	Monoalphabetic Substitution
	Vigenère
	Scytale
	Rail Fence
	Columnar
	Two Square
	Four Square
	Playfair
	ADFGX
	ADFGVX
	Linear Feedback Shift Register (LFSR)
	Hill
	Enigma
	RSA
	ElGamal

	Text and Stream Analysis
	Frequency Analysis
	Hill Climb Analysis
	Kasiski's Method
	Coincidence Analysis
	Dot Product Analysis
	Substring Compare
	LFSR Cipher Analysis

	Text Tools
	Text Extractor
	Text Combiner
	Text Converter
	Notepad
	Gridpad
	User Defined Language Creator

	Calculators
	Integer Calculator
	Modular Matrix Calculator
	Elliptic Curve Calculator
	Random Number Generator

	Factoring Tools
	Brute Force Factoring
	Fermat Factoring
	Pollard p - 1 Factoring
	Williams P + 1 Factoring
	Pollard Rho Factoring
	Brent's Method Factoring
	Quadratic Sieve Factoring
	Multiple Polynomial Quadratic Sieve Factoring
	Lenstra's Elliptic Curve Factoring
	Multiple Factoring Methods

	Discrete Logarithm Tools
	Brute Force Discrete Logarithm
	Pohlig-Hellman Discrete Logarithm
	Pollard Rho Discrete Logarithm
	Pohlig-Hellman with Pollard Rho Discrete Logarithm
	Index Calculus Discrete Logarithm
	Variant of the Index Calculus Discrete Logarithm


	Bibliography
	Index

