
 Auromita Nagchaudhuri, Undergraduate, University of Maryland Baltimore County

 Department of Information Systems

 Joshua Schultz, Student Mentor, Salisbury University

 Department of Math & Computer Science

 Dr. Enyue Lu, Faculty Mentor, Salisbury University

 Department of Math & Computer Science

Pattern Detection in Real-World Social

Networks using MapReduce in Hadoop

Pattern analysis on large-scale graphs, such as social

networks is a very important part of various applications

such as blog analysis, spamming detection, community

detection, and many more. This project continues from

last summer’s endeavors of the REU students. The

objective of this study is to test the MapReduce

algorithm, in Hadoop framework, called EnumTriangles

to see if there can be any improvements regarding the

running times, while maintaining 100% accuracy. We

are using the real-world datasets from SNAP Stanford

with our testing.

 MapReduce Programming Model

 Project Description

 Improving EnumTriangles Algorithm

This research is funded by National Science Foundation CCF-1156509 under the Research Experience for Undergraduates Program.

Big Data processing is a

complicated procedure. This

was made less complex with

Google’s new programming

tool called MapReduce(Fig

1). MapReduce has two

procedures:

1. The map phase takes in inputs and divides them into

key-value pairs then distributes them to the worker

nodes. The worker nodes process the inputs and

send it to the master node.

2. In the reduce phase the master node works on

collecting all of the data from the given key-value

pairs and organizes it into an output file.

Enumerating Triangles is a MapReduce algorithm which

takes input data in as raw edges. It has 2 Map and 2

Reduce phases. First, it maps out all of the open triads

and finally reduces it down to every possible closed

triangle. In the output it shows all of the vertices from the

given datasets that make up triangles. We used three of

the smaller datasets from SNAP Stanford which are

Wiki-Vote [size: 1.04MB; 7,115 nodes, 103,689 edges],

Slashdot[size: 10.2MB; 77,360 nodes, 905,468 edges]

and Epinions[size: 8.99 MB; 131, 828 nodes, 841,372

edges]. The first thing we noticed that although the

EnumTriangles algorithm was 100% accuracy, the

running time was quite slow.

Hadoop is an open source library that was used to

implement the MapReduce algorithms.

Figure 1

 Figure 2

In order to improve the algorithm (see Figure 2 for

running time graph), we decided to take out a

method called deleteDir(). This method deletes

intermediate files that are unnecessary. However,

we found that deleting this method only improves

running time on a single computer and not on the

cloud.

Then, we timed each of the jobs and noticed that

the final job (job 3) in the last Reduce() phase of

the program took the longest. After that it was

much easier to figure out what part of the code we

were to focus on. We found the reduce phase of

job 3 was the slowest. In the reducer there is a “for

loop” that could be parallelized. Using java’s

ExecutorService, we were able to distribute each

iteration of the “for loop” to different cores and

improve our running time. Figure 3 shows the

slight improvement in running time. Figure 3

 ThreeCompany- Another Implementation for Triangle Counting

In light of enumerating triangles we tested another algorithm on the three datasets with an

iterative program called ThreeCompany. It has 1 Map and 1 Reduce phase. The goal of

ThreeCompany is to find various groups of threes in a social circle. It takes in inputs as linked

lists and outputs them according to whether or not there are closed or open triads. All of the

closed triangles have a “3” next to them in the output. After counting the number of “3s” for

each we matched the numbers to SNAP Stanford. It was around 99% accurate. All of the other

open triangles have a “1” next to them. The small datasets that it took in outputted very large

files. Due to it outputting every open and closed triad, ThreeCompany outputs very large files.

(See Table 1)

After counting the number of “3s” for each we matched the numbers to SNAP Stanford. It was

around 99% accurate. We expected a 100% accuracy , but did not get it. We have not been able

to figure out why.

Table 1

Figure 4

In ThreeCompany algorithm, all of the closed

triangles have a “3” next to them in the output.

After counting the number of “3s” for each we

matched the numbers to SNAP Stanford. It was

around 99% accurate. All of the other open

triangles have a “1” next to them. Due to the

larger output sizes, the running time in

comparison to EnumTriangles was slower (see

figure 4).

 Future Work

 To figure out why ThreeCompany doesn’t have

a 100% accuracy in determining the number of

triangles.

 To reduce the running time for different graph

pattern detection algorithms: EnumRectangles,

BaryCentricClusters, Trusses, Components, and

ThreeCompany.

 To use compression of the mapper output:

compression would be done before the data is

sent across the network therefore reducing the

amount of data being distributed. Doing this will

also take longer to pack and unpack so it will be

interesting to see whether or not it would be

beneficial.

 To use combiners instead of reducers:

combiners, although they can perform the

same tasks as reducers, however the data is

combined on the same computer as the mapper

which therefore decreases the amount of data

being distributed. This should reduce the

running time. However, this only works in

specific cases so it may or may not be

applicable to all phases.

 To process larger datasets of larger sizes on

SNAP Stanford (>1 GB, 1,000,000 nodes,

1,000,000 edges, etc.) such as Facebook,

Twitter, Reddit, etc.

