
Conclusions and Future Considerations:  
     When comparing the CPU and GPU implementations, it 
becomes clear that for a parallelizable problem, particularly 
an embarrassingly parallel problem such as this, a GPU 
implementation runs much faster.   
     As shown in Table 3, increasing the number of 
computations per kernel will complete more computations 
per second than having fewer computations per kernel up to 
a certain point.  We believe this is due to the overhead of 
spawning new threads, which becomes a bottleneck when 
performing few calculations per kernel.  However, increasing 
the number of computations per kernel can eventually 
become a bottleneck as shown by the steady lessening of 
performance increase as computations are increased (Table 
3), as evidenced by 9x9 implementation being slower than 
7x7 implementation in some instances. 
     I/O is the largest overall bottleneck.  Having more 
computations per kernel can increase the number of 
computations per second.  Future work in this area may 
focus on keeping data in memory and doing more 
computations per kernel for optimized GPU usage. 

Sensitivity Analysis of GP-GPU Technology in its Application 
to GIS Terrain Analysis 

David Eberius, Salisbury University 
Dr. Arthur J. Lembo, Jr., Salisbury University 

Results and Discussion: 
       As shown in Table 1, the 3x3 CUDA kernel 
implementation was ~83-100 times faster than the CPU 
implementation depending on the amount of data.  As the 
number of computations is increased with the same data size 
by increasing the kernel size, the speed increase of the GPU 
goes down.  However, the GPU is still much faster than the 
CPU with the lowest increase being ~48 times.  This decrease 
is most likely due to the fact that the CPU is much faster per 
calculation due to its much higher clock rate. 
     Each subsequent increase in kernel size does not increase 
the number of computations in a linear fashion. Similarly, the 
trend of decreased run time as the number of computations 
increases is not linear with 5x5 ~33% faster than 3x3, 7x7 
~17% faster than 5x5, and 9x9 ~2.5% faster than 7x7 on 
average.  The 9x9 implementation even ran slower than the 
7x7 implementation on some occasions. 

Introduction: 
     Research by Knipprath and Lembo (2013) showed that while 
CUDA methods for terrain modeling are faster than serial 
methods, only moderate gains were seen when attempting to 
further improve CUDA processing through multi-threading, 
novel tiling schemes, and memory mapped files.  The primary 
limitation for improving speed appears bound to the I/O 
bottleneck when compared to the fast speed of the GPU 
computation.   Traditional terrain modeling is an I/O heavy 
endeavor, with small numbers of computations for a massive 
number of pixels, thus exceeding the memory limitations of 
the GPU. 
     This work sought to investigate speed improvements when 
increasing the number of computations per pixel, as opposed 
to increasing the number of pixels themselves.  To accomplish 
this, slope analysis was performed using 3x3, 5x5, 7x7, and 9x9 
kernels while keeping the number of computations the same.  
    The results showed that having smaller datasets with larger 
numbers of computations per element are better suited for 
CUDA based GIS analysis. 

Data and Methods: 
     This work was specifically interested in testing the speed 
difference when using a CUDA kernel with many more 
computations.  To achieve this, the number of raw 
computations remained constant (within .03%) between the 
kernel configurations by scaling the data size (i.e. A 9x9 kernel 
has ~9.9 times more computations per pixel than a 3x3 kernel, 
so the amount of data for the 3x3 kernel is ~9.9 times larger 
than the 9x9 kernel resulting in equivalent numbers of 
computations).   
     The starting data size was for the 9x9 kernel (the kernel with the 
smallest data size because it has the most computations) was ~5.637 
Mb.  Thus, the other kernels were scaled accordingly such that the 
3x3 kernel ended up being ~55.81 Mb.  Each kernel configuration 
was run 10 times for this file size and the average computed.  The 
initial file size was then increased by a factor of two, three, etc… until 
a factor of 8.  The various kernels were then run for the new size 
(Table 3).  

Figure 1.  The different kernels used for slope analysis have 
varying degrees of weights with the 9x9 kernel having 
considerably more complexity than 3x3. 

Table 1.  Results of speed improvements when more 
computations are performed on the GPU over the CPU.   

Kernel Size Data Size (Mb) CPU Time (ms) GPU Time (ms) Speed-Up Factor

3x3 5.637 286.47 3.46 82.80

3x3 140.925 7253.81 72.37 100.81

5x5 5.637 407.39 6.11 66.65

5x5 140.925 10117.69 126.72 80.15

7x7 5.637 568.86 10.42 54.61

7x7 140.925 14347.46 216.44 66.45

9x9 5.637 813.24 16.69 48.73

9x9 140.925 20545.62 345.18 59.60

Source 3x3 Calculations 5x5 Calculations 7x7 Calculations 9x9 Calculations

Logical Comparisons 15 31 55 87

Calculations in Indices 40 130 300 572

Inverse Tangent 1 1 1 1

Square Root 1 1 1 1

Exponent 2 2 2 2

+ - / * 18 45 85 135

Assignment 4 4 4 4

Total 81 214 448 802

Table 2.  A breakdown of the number of calculations for 3x3, 
5x5, 7x7, and 9x9 Kernels broken down by source.  Clearly the 
complexity increases rapidly as you increase kernel size. 

File Size Multiplier 9x9 vs 7x7 7x7 vs 5x5 5x5 vs 3x3 7x7 vs 3x3 9x9 vs 3x3

1 -0.38% 9.61% 32.29% 38.80% 38.57%

2 -5.47% 17.26% 36.97% 47.85% 45.00%

3 2.58% 17.25% 32.20% 43.90% 45.35%

4 1.52% 17.76% 31.75% 43.87% 44.73%

5 3.61% 20.32% 29.53% 43.85% 45.87%

6 5.64% 17.74% 33.48% 45.28% 48.37%

7 6.80% 17.75% 33.30% 45.14% 48.87%

8 5.98% 17.61% 32.98% 44.78% 48.08%

Average 2.54% 16.91% 32.81% 44.18% 45.60%

Table 3.  This shows the percent increase or decrease seen 
when comparing a kernel configuration with more 
computations to one with fewer. 


