Using Multiple Languages on a GPU Computation Platform

Kelly O'Conor, Advisor: Dr.Don Spickler
Villanova University, Salisbury University

Abstract

2

As the use of graphic-processor units (GPU) to obtain faster
performance improvements becomes more popular, the use of CUDA
as a programming model for GPUs for use by C/C++ programmers
has increased as well. In this investigation, | present the use of
multiple languages on a GPU computation platform exploring
extended precision integer arithmetic, specifically Java and C in
CUDA. To do so, | used a programming interface called JCUDA that
can be used by Java programmers to invoke CUDA kernels. By using
this interface, programmers can write Java codes that directly call
CUDA kernels and generate the Java-CUDA bridge codes and allows
for the host device data transfer to the GPU. As a benchmark
application for run times, | used the factoring of large semi-primes
using a quadratic sieve method. While still slower than C in CUDA,
the preliminary performance results show that this interface
delivers a significant performance improvement to Java
programmers.

Background Information

GPU Processing and CUDA

A GPU (Graphics Processing Unit) is a highly parallel computing
device designed for the task of graphics rendering. Due largely in
part to the demand for high definition graphics, 3D gaming, and
multimedia experiences, the GPU has evolved into a very parallel,
multithreaded, multi-core, more general processor allowing users
to program certain aspects of the GPU to create detailed graphics
and scientific application. In general, the GPU has become a
powerful device for the execution of data-parallel, arithmetic
intensive applications in which the same operations are carried out
on many elements of data in parallel. Example applications include
video processing, machine learning, and 3D medical imaging.

The NVIDIA’s Compute Unified Device Architecture (CUDA) has
become the popular programming model for GPUs for use by C/C++
programmers. The basic idea behind computing on the GPU is to use
to speed up and accelerate specific computations in applications,
which traditionally are done by the CPU (Central Processing Unit).
While using CUDA, a written application contains two sections of
code: functions on the CPU host and functions on the GPU device.
The functions for the GPU are labeled with the keyword global and
are called kernels. The kernel, which operates across an array of
data, executes across a set of parallel threads in parallel. Triple
angle brackets mark a call from host code to device code. CUDA
enables dramatic increases in computing performance by harnessing
the power of the graphics processing unit.

he Quadratic Sieve Factoring Method

The Quadratic Sieve Factoring method was the benchmark
application for runtime comparisons.

The QS consists of two major steps: the sieving step, to collect the
relations, and the matrix step, where the relations are combined
and the factorization is derived. For numbers in the current range,
the sieving step is by far the most time consuming. It is also the
step that allows easy parallelization.

_

N/

%

Rootbeer

Originally, | intended to use Rootbeer in order to use Java on the
GPU.

Developed by Philip C. Pratt-Szeliga, a Ph.D candidate at Syracuse
University, the Rootbeer GPU Compiler makes it easy to use

Graphics Processing Units from within Java. Rootbeer automatically

(de)serializes complex graphs of objects into arrays of primitive
data and generates the CUDA code through a static analysis of the
Java Bytecode.

Unfortunately while the sample codes ran, when | used the Big
Integer class needed for factoring instead of the int class in Java,
Rootbeer failed.

import edu.syr.pcpratts.rootbeer.runtime.Kernel;
import edu.syr.pcpratts.rootbeer.runtime.Rootbeer;
import edu.syr.pcpratts.rootbeer.runtime.util.Stopwatch;

public class BigIntegerFactoring {
public woid BigMultInt(BigInteger[] array)q

List<Kernel> jobs = new ArraylList<Kernel>();
for(int i = @; 1 < array.length; ++i){
jobs.add(new BigIntegerMult(array, 1));

}

Rootbeer rootbeer = new Rootbeer();
roctbeer.runAll{jobs);

Rootbeer Sample Code

JCUDA

JCUDA is designed to be an interface for invoking CUDA kernels
from Java code. The JCuda driver has the bindings to load and
execute a CUDA kernel. Written mainly in Java, the sample reads a
CUDA file which is written in C, compiles it to a PTX file. Then using
NVCC, loads the PTX file as a module and executes the kernel
function then copies the device output back to the host.

// Call the kernel function.

int blockSizeX = 256;
int gridSizeX = (int)Math.ceil(({double)allexponents.length / blockSizeX);

System.out.println("Launching Kernel...");
long time® = System.nanoTime();
cuLaunchkKernel{functien,
gridsizeX, 1, 1,
blockSizeX, 1, 1,
@, null, // Shared memory size and stream
kernelParameters, null // Kernel- and extra parameters
:l '

long timel = System.nanoTime();

// aGrid dimension
// Block dimension

System.out.println("cuCtxSynchronize()");
cuCtxSynchronize();
GPUTime = timel - timed;

JCuda sample kernel call

EEEEEEEEE

igInt testnu r;
CUuBigInt builtnum{0);
cuBigInt tentho(10000);
pos = numbers[1]-1;
while (pos == 0 && exps[tid¥*numbers[1]+pos] == 0)
5--;
for(int k=pos; k == 0; k--){
int rt =(exps[tid*numbers[1]+k]);
builtnum = builtnum*(tentho) +{part);
ttttttt ber = builtnum;

CUuBigInt one(l);
cuBigInt zero(0);
int 1;

or (1 =

f tid®*numbers[1]; i <

exps[i] = 0;

tid*numbers [1]+numbers[1]; i++)

The C Code it calls

Methods & Results

Results

Windows : Windows 7 Enterprise Edition (64-bit) Service Pack 1
(Build 7601)

Memory (RAM): 8184 MB
CPU Info: Intel(R) Xeon(R) CPU E5607 @ 2.27GHz

Display Adapters : NVIDIA GeForce GTX 670 / 1344 cores / 2 GB
GDDR5 Memory / 7 multi-processors

CPU Factoring Times with Varying Array Sizes

7.00000

6.00000

5.00000

S5
S 4.00000
S
@ 3.00000
n

2.00000

1.00000

0.00000

Array Size 50 200 1000 10000 100000

Cc 2.18087 2.18020 2.18480 3.81502 5.5612
Java 0.05640 0.05573 0.06033 0.10389 0.40436

 Surprising to anyone who has worked with Java and C/C++, the

Java-CPU version of the algorithm was faster than the C
implementation. This is due to the use of the built in Java Big
Integer class which has been optimized to be the fastest versus
the Big Int class that was written in C.

GPU Factoring Time with Varying Thread Sizes

1.2

1 =

/
.—————I—————IF//'

0.8

Seconds

0.2

0

Threads 1024 512 256 50 32 16
Array Size 10,000 10,000 10,000 100,000 10,000 10,000
JCUDA GPU 0.827443 0.836954 0.887679 0.914231 0.926175 1.021283
=i=CUDA GPU 0.293672 0.305529 0.302422 0.455956 0.467900 0.748837

The results of factoring on the GPU were not surprising like the
results on the CPU. As the number of threads increased, the
speed on the GPU also increased. The JCUDA takes a hit due to
the overhead of Java and also the data transfer time, which is
naturally must faster on C.

Factoring Times with Varying Digit Sizes

18.00

16.00

14.00

12.00

© 10.00
c

JCUDA
=@=CUDA

(&)
$ 8.00 /
JAVA CPU

6.00

4.00

2.00 /

H/—
0.00 —
11 12 13 14 15 16 17 18

By changing the amount of digits of the number being factored,
the times progressively got slower. JCUDA proved to still be
slower than CUDA on the GPU. This is due to the data transfer
from the CPU to the GPU in JCUDA. By chopping the Big Integers
into an array of ints, | was able to send the big numbers to the
GPU, this however was relatively very time consuming.

<

2

%

_

Pros/ Cons of JCUDA

Pros:

» JCUDA provides access to CUDA for Java programmers, exploiting
the full power of GPU hardware from Java based applications.
Using JCUDA you can create cross-platform CUDA solutions, that
can run on any operating system supported by CUDA without
changing your code

« Using Java allows access to the huge library. Specifically, the use
of the Big Integer class increased the speed of the algorithm run
on the CPU using Java

Cons: The overhead introduced by data transfers can overwhelm
the benefits of fast GPU computation which is shown with the
results of the GPU factoring time

Conclusion

By the results, | have seen that factoring in CUDA with C is faster
than using JCUDA on the GPU. While the surprise came on the CPU
side, the GPU results were what was expected. Using JCUDA anc
Java brings some overhead, especially during data transfer which
causes the overall algorithm to be slower. By increasing the array
size and the number of threads used on the GPU using both JCUDA
and CUDA, | was able to make the algorithm more efficient. Using
JCUDA allowed me to use Java and also explore using multiple
languages on the GPU.

Advancement

To continue, | could revise the algorithms in the Biglnt struct (class)
to be more efficient, making the C code on the CPU side faster.
Then, | could look into revising the C side of the code to use CUMP
(The CUDA Multiple Precision Arithmetic Library). Finally, | can look
at alternative ways to relate the Java Biglnteger class to the C
BigInt struct.

References

* Donald Knuth, Seminumerical Algorithms: the Art of Computer
Programming, v.2 (Addison-Wesley Publishing Co.,Reading,MA,
1981.

 Wade Trappe and Lawrence Washington, Introduction to
Cryptography with Coding Theory, ed. 2 (Pearson, 2006)

* Neal R. Wagner: The Laws of Cryptography: The RSA
Cryptosystem

 Philip C. Pratt-Szeliga: “ Rootbeer: Seamlessly using GPUs from
Java”

« Connelly Barnes: “Integer Factorization Algorithms”

 CUDA by Example: An Introduction to General-Purpose GPU
Programming (29 July 2010) by Jason Sanders, Edward Kandrot

e jcuda.org

Acknowledgements

« NSF REU (Research Experiences for Undergraduates)

EXERCISE - EXplore EmeRging Computing In Science and Engineering
program. Award #1156509

 Salisbury University: Henson School of Science & Technology

%

http://www.facebook.com/pages/PosterPresentationscom/217914411419?v=app_4949752878&ref=ts

