
Exploring Methods to Improve the Performance of CUDA Implementation
for GIS Terrain Modeling: What Are Reasonable Expectations

David Knipprath, Arcadia University
Dr. Arthur J. Lembo, Jr., Salisbury University

through multithreading. This turned out not to be the
case. The file input is such a large part of the total
runtime (As documented in figure 3) that the added
parallelism hardly makes any difference.
 However, we did see marked improvement in runtime
of the multi-threaded architecture when compared to a
non-threaded version of the same algorithm. A two
sample difference (Table 1) test was used to evaluate the
introduction of multi-threading in processing Howard
County (1.2GB, 336,960,000 pixels). The test showed that
multi-threading significantly improved total runtime.
 The comparison of fstream methods vs. memory
mapped files for file input showed two results. For tiles
that spanned the full length of the data set (and were
thus read serially) little difference was seen between the
two methods. However, with smaller sized tiles mapping
was much faster. We believe this is because file mapping
allows the OS to handle I/O calls and caching.

Conclusions and Future Considerations:
 While there are improvements to gained by multi-
threading GIS users would probably see better results by
upgrading to solid state drives. Comparing QGIS’s runtime
to that of the multi-threaded CUDA algorithm, for non-
cached files, the speed up isn’t even double.
 The main issue is the “calculations-to-I/O-calls” ratio.
To see truly significant improvements this ratio has to
grow. This can happen in one of two ways, either improve
the speed of the I/O calls through hardware, or
implement functions that require more computations per
unit of data.

Abstract:
 Previous research has shown that with little
programming effort, the benefits of using CUDA in
GIScience for embarrassingly parallel tasks related to terrain
modeling yields impressive results. However, researchers
have considered the possibility of further improvements for
even faster results.
 The goal of this research was to examine how much one
can realistically expect to improve the runtimes of GIS raster
functions running on CUDA enabled devices compared to
both rudimentary CUDA implementations and traditional
serial algorithms. Specifically, this research evaluated more
complex algorithms utilizing multi-threading, novel tiling
schemes, and memory mapped files.
 The results of this work showed that while CUDA
performs significantly faster than serial algorithms, the
more sophisticated algorithm architecture provide only
moderate improvements over simpler implementations.

Data and Methods:
 Six Idrisi RST raster files (ranging from 512MB to 12GB)
were processed and analyzed using a 3x3 kernel function for
slope. The function was implemented using both a multi-
threaded and serial architecture. Additional methods for
improving the algorithm were explored including tiling, and
memory mapped files.
 The general method for processing a slope function on a
raster dataset includes reading in the file, processing the
data, and outputting the file. For our multi-threading
improvement, we broke the algorithm into three threads,
illustrated in Figure 1. Figure 2 illustrates two ways to break
a file into tiles, the first methods uses a tile that spans the
full length of the file, where as the second uses tiles with a
length smaller than that of the file.

Results and Discussion:
 The various potential improvements that were
implemented showed varying degrees of success.
 It was thought that tiling may allow the algorithm to read
smaller chunks of data at a time and therefore feed the
input buffer faster, and thus get greater parallelism

Figure 3:
Analysis of various algorithm architectures. This graph illustrates
just how much time is spent reading in the file, compared to
processing and output.

Figure 1. The program
architecture for CUDA exe-
cution has three primary
threads: One thread reads
in the file and populates
the input buffer, another
process the tiles, and the
third outputs the results.
The input bottle-neck is
highlighted.

Figure 2. Alternate tiling
schemes illustrate how
reading can be performed
with varying tiling sizes, to
facilitate greater efficiency
for data access.

Table 1: A comparison of
multi-threading vs. a
non-threaded imple-
mentation showed that
the introduction of
multi-threading
significantly improved
the results

 Howard Non-threaded Howard

Mean 22.07 30.82

Variance 16.18 44.45

Observations 42 321

t Stat -12.08919343

p 0.000

0

100

200

300

400

500

Proc Time Output Time Input Time Total Time

