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Medical imaging, gaming, and many other important real-world applications are 

computationally demanding processes due to the large number of quick calculations 

required at execution time. The introduction of GPUs has made it possible to 

parallelize these computations at a very low cost. In past work, we developed an 

iterative algorithm for nonlinear ultrasonic imaging using the propagation and 

backpropagation (PBP) method, and demonstrated that a GPU implementation of the 

algorithm could massively reduce the computation time.  

In this work, we show that by incorporating target sparseness into the ultrasonic 

imaging algorithm, we can further accelerate the convergence rate of the algorithm 

by implementing it using  a GPU. 

The basis of the tomographic imaging problem starts with the following wave  

propagation equation: 

 

 

 

where             is the acoustic field over                    is the number of simultaneous 

excitation sources,                           is the acoustic wave propagation speed, and        

is the acoustical potential function that we are reconstructing.  The imaging problem  

can also be presented as an inverse problem  

 

 

where      is the data collected at the sensors surrounding the imaging field and 

      is a nonlinear operator.  The solution to the sparsity-aware MIMO imaging  

problem is given by  

 

 

where Pd(∙) is the projection operator, γk is the steepest descent coefficient, and 

k = 0, 1, 2… is the iteration timestamp. 

 

 

Nvidia’s Compute Unified Device Architecture (CUDA) enables the parallel 

processing of algorithms on consumer-level graphics processing units (GPUs). 

CUDA uses a C-like programming model, giving developers a simple interface to 

utilize the parallel capabilities of modern day GPUs.  Processes that need to be run in 

parallel are called on the CPU before being split up and run on the GPU; each parallel 

procedure is run on an individual thread, and threads are organized into groups called 

blocks.  Data is transferred between the CPU and the GPU through memory copies 

and allocations.  This means that CUDA programs can utilize both serial, CPU-hosted 

functions and GPU-hosted parallel functions.  The architecture also provides a shared 

memory region for each block of threads, allowing for fast memory accesses across 

multiple threads in a parallel program.   

The CUDA programming model allows the general user to utilize the capabilities 

of the GPU.  The GPU’s unique parallel capabilities can be used in a wide range of 

activities, including imaging, gaming, and computationally intensive applications. 

INTRODUCTION 

PROBLEM DESCRIPTION 

We successfully implemented the sparsity-aware PBP imaging algorithm on the 

GPU. Our final results were benchmarked against both a MATLAB version of the 

algorithm and a C++ version. Our tests were run on a GeForce GTX 670 GPU, 

which has 1344 CUDA cores. We used a desktop computer with a quad core Xeon 

microprocessor running at 2.27 GHz and 8.0 GB of RAM.  The setup of the 

imaging field and the iterative reconstruction process can be seen in Fig. 1.  

RESULTS 

For our CUDA implementation of the sparsity-aware MIMO PBP imaging 

algorithm, we used the grid and block configuration that was found to have the best 

performance with the version of the algorithm that does not account for sparsity. In 

our implementation, each thread calculates a grid point (i.e. pixel) in parallel, 

lowering the execution time substantially. 

By introducing a sparsity constraint into the algorithm, we faced a new parallel 

implementation issue, the race condition.  Race conditions occur when multiple 

threads attempt to alter the same value in memory simultaneously, resulting in 

random and incorrect results.  To successfully parallelize this type of calculation, we 

utilized parallel reduction, where partial sums are created in the shared memory of 

each thread block, and then added together after being copied back to the CPU to 

produce a final sum.  Through the use of reduction, we achieved a speedup of 

approximately 4 seconds with our CUDA implementation. 

GPU IMPLEMENTATION RESULTS (CONTINUED) 

  

CONCLUSIONS 
In this paper, we developed an effective GPU implementation of the sparsity-aware 

propagation and backpropagation imaging algorithm. The initial version of the 

algorithm, implemented in MATLAB, took just under six hours to complete. Our 

final CUDA implementation took an average of 46 seconds to execute, giving us an 

improvement of approximately 460x.  When compared to the base imaging algorithm 

that doesn’t account for image sparsity, we found an improvement of approximately 

2.4x with our CUDA implementation, without compromising the quality of the 

reconstructed image. 

The introduction of parallel sparse imaging calculations resulted in race 

conditions, which presented noticeable performance and accuracy problems. Parallel 

reduction was used to successfully alleviate race conditions, providing accurate 

results and improved performance. 
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Figure 1: Examples of the imaging field prior to running the imaging algorithm and during the 

iterative reconstruction process.  (A) The ground truth image.  (B) The ground truth with prior 

knowledge of the target shown in green.  (C) The reconstructed image during the first iteration of 

the algorithm.  From left to right, the results after j = 10, 30, 100, 300, and 600, respectively, where 

j is the number of excitation sources that have propagated a wave across the imaging field during 

the first iteration. 

Table 1: Processing times 

Table 2: Performance tabulation 
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Figure 2: Final reconstructed image 

In our tests, our CUDA implementation of the algorithm was approximately 

460x faster than the MATLAB version and approximately 52x faster than the C++ 

version.  The actual execution times and performance improvements can be seen in 

Table 1 and 2.  Compared to a version of the imaging algorithm that does not 

account for image sparseness, our tests showed a performance improvement of 

2.4x with the CUDA implementations of both 

algorithms (Table 3). This tangible performance  

improvement did not result in any degradation  

in the quality of the reconstructed image,  

however.  The final result of the reconstructed 

 image made using the sparsity-aware algorithm  

can be seen in Fig. 2. 

Table 3: Performance of sparsity-aware algorithm vs. base algorithm 

Platform MATLAB C++ CUDA 

MATLAB 1 0.113 0.002 

C++ 8.842 1 0.018 

CUDA 459.957 52.020 1 
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