
RESEARCH POSTER PRESENTATION DESIGN © 2012

www.PosterPresentations.com

QUICK DESIGN GUIDE
(--THIS SECTION DOES NOT PRINT--)

This PowerPoint 2007 template produces a 36x48

inch professional poster. You can use it to create

your research poster and save valuable time placing

titles, subtitles, text, and graphics.

We provide a series of online tutorials that will

guide you through the poster design process and

answer your poster production questions.

To view our template tutorials, go online to

PosterPresentations.com and click on HELP DESK.

When you are ready to print your poster, go online

to PosterPresentations.com.

Need Assistance? Call us at 1.866.649.3004

Object Placeholders

Using the placeholders

To add text, click inside a placeholder on the poster

and type or paste your text. To move a placeholder,

click it once (to select it). Place your cursor on its

frame, and your cursor will change to this symbol

Click once and drag it to a new location where you

can resize it.

Section Header placeholder

Click and drag this preformatted section header

placeholder to the poster area to add another

section header. Use section headers to separate

topics or concepts within your presentation.

Text placeholder

Move this preformatted text placeholder to the

poster to add a new body of text.

Picture placeholder

Move this graphic placeholder onto your poster, size

it first, and then click it to add a picture to the

poster.

Student discounts are available on our Facebook page.

Go to PosterPresentations.com and click on the FB icon.

QUICK TIPS
(--THIS SECTION DOES NOT PRINT--)

This PowerPoint template requires basic PowerPoint

(version 2007 or newer) skills. Below is a list of

commonly asked questions specific to this template.

If you are using an older version of PowerPoint some

template features may not work properly.

Template FAQs

Verifying the quality of your graphics

Go to the VIEW menu and click on ZOOM to set your

preferred magnification. This template is at 100%

the size of the final poster. All text and graphics will

be printed at 100% their size. To see what your

poster will look like when printed, set the zoom to

100% and evaluate the quality of all your graphics

before you submit your poster for printing.

Modifying the layout

This template has four different

column layouts. Right-click

your mouse on the background

and click on LAYOUT to see the

 layout options. The columns in

the provided layouts are fixed and cannot be moved

but advanced users can modify any layout by going

to VIEW and then SLIDE MASTER.

Importing text and graphics from external sources

TEXT: Paste or type your text into a pre-existing

placeholder or drag in a new placeholder from the

left side of the template. Move it anywhere as

needed.

PHOTOS: Drag in a picture placeholder, size it first,

click in it and insert a photo from the menu.

TABLES: You can copy and paste a table from an

external document onto this poster template. To

adjust the way the text fits within the cells of a

table that has been pasted, right-click on the table,

click FORMAT SHAPE then click on TEXT BOX and

change the INTERNAL MARGIN values to 0.25.

Modifying the color scheme

To change the color scheme of this template go to

the DESIGN menu and click on COLORS. You can

choose from the provided color combinations or

create your own.

© 2013 PosterPresentations.com
 2117 Fourth Street , Unit C
 Berkeley CA 94710
 posterpresenter@gmail.com

Medical imaging, gaming, and many other important real-world applications are

computationally demanding processes due to the large number of quick calculations

required at execution time. The introduction of GPUs has made it possible to

parallelize these computations at a very low cost. In past work, we developed an

iterative algorithm for nonlinear ultrasonic imaging using the propagation and

backpropagation (PBP) method, and demonstrated that a GPU implementation of the

algorithm could massively reduce the computation time.

In this work, we show that by incorporating target sparseness into the ultrasonic

imaging algorithm, we can further accelerate the convergence rate of the algorithm

by implementing it using a GPU.

The basis of the tomographic imaging problem starts with the following wave

propagation equation:

where is the acoustic field over is the number of simultaneous

excitation sources, is the acoustic wave propagation speed, and

is the acoustical potential function that we are reconstructing. The imaging problem

can also be presented as an inverse problem

where is the data collected at the sensors surrounding the imaging field and

 is a nonlinear operator. The solution to the sparsity-aware MIMO imaging

problem is given by

where Pd(∙) is the projection operator, γk is the steepest descent coefficient, and

k = 0, 1, 2… is the iteration timestamp.

Nvidia’s Compute Unified Device Architecture (CUDA) enables the parallel

processing of algorithms on consumer-level graphics processing units (GPUs).

CUDA uses a C-like programming model, giving developers a simple interface to

utilize the parallel capabilities of modern day GPUs. Processes that need to be run in

parallel are called on the CPU before being split up and run on the GPU; each parallel

procedure is run on an individual thread, and threads are organized into groups called

blocks. Data is transferred between the CPU and the GPU through memory copies

and allocations. This means that CUDA programs can utilize both serial, CPU-hosted

functions and GPU-hosted parallel functions. The architecture also provides a shared

memory region for each block of threads, allowing for fast memory accesses across

multiple threads in a parallel program.

The CUDA programming model allows the general user to utilize the capabilities

of the GPU. The GPU’s unique parallel capabilities can be used in a wide range of

activities, including imaging, gaming, and computationally intensive applications.

INTRODUCTION

PROBLEM DESCRIPTION

We successfully implemented the sparsity-aware PBP imaging algorithm on the

GPU. Our final results were benchmarked against both a MATLAB version of the

algorithm and a C++ version. Our tests were run on a GeForce GTX 670 GPU,

which has 1344 CUDA cores. We used a desktop computer with a quad core Xeon

microprocessor running at 2.27 GHz and 8.0 GB of RAM. The setup of the

imaging field and the iterative reconstruction process can be seen in Fig. 1.

RESULTS

For our CUDA implementation of the sparsity-aware MIMO PBP imaging

algorithm, we used the grid and block configuration that was found to have the best

performance with the version of the algorithm that does not account for sparsity. In

our implementation, each thread calculates a grid point (i.e. pixel) in parallel,

lowering the execution time substantially.

By introducing a sparsity constraint into the algorithm, we faced a new parallel

implementation issue, the race condition. Race conditions occur when multiple

threads attempt to alter the same value in memory simultaneously, resulting in

random and incorrect results. To successfully parallelize this type of calculation, we

utilized parallel reduction, where partial sums are created in the shared memory of

each thread block, and then added together after being copied back to the CPU to

produce a final sum. Through the use of reduction, we achieved a speedup of

approximately 4 seconds with our CUDA implementation.

GPU IMPLEMENTATION RESULTS (CONTINUED)

CONCLUSIONS
In this paper, we developed an effective GPU implementation of the sparsity-aware

propagation and backpropagation imaging algorithm. The initial version of the

algorithm, implemented in MATLAB, took just under six hours to complete. Our

final CUDA implementation took an average of 46 seconds to execute, giving us an

improvement of approximately 460x. When compared to the base imaging algorithm

that doesn’t account for image sparsity, we found an improvement of approximately

2.4x with our CUDA implementation, without compromising the quality of the

reconstructed image.

The introduction of parallel sparse imaging calculations resulted in race

conditions, which presented noticeable performance and accuracy problems. Parallel

reduction was used to successfully alleviate race conditions, providing accurate

results and improved performance.

ACKNOWLEDGEMENTS
The work is supported in part by the National Science Foundation under grant

no. CCF- 1156509 and CMMI-1126008, and the U.S. Army Research

Laboratory, the Office of Naval Research, and the Army Research Office under

grant no. W911NF-11-1-0160.

1Department of Computer Science, Texas State University, TX
2Department of Computer Science, Amherst College, MA

3Department of Engineering and Aviation Sciences, University of Maryland Eastern Shore, MD
4Department of Mathematics and Computer Science, Salisbury University, MD

Agustin Rivera-Longoria1, Mark Idleman2, Yuanwei Jin3, Enyue Lu4

GPU Accelerated, Sparse-Aware Ultrasonic Tomographic Imaging
Using the Propagation and Back Propagation Method

MATLAB C++ CUDA

Time

(hh:mm:ss)

05:52:38 00:39:53 00:00:46

Sparsity-Aware Algorithm Base Algorithm

Time (hh:mm:ss) 00:00:46 00:01:50

Figure 1: Examples of the imaging field prior to running the imaging algorithm and during the

iterative reconstruction process. (A) The ground truth image. (B) The ground truth with prior

knowledge of the target shown in green. (C) The reconstructed image during the first iteration of

the algorithm. From left to right, the results after j = 10, 30, 100, 300, and 600, respectively, where

j is the number of excitation sources that have propagated a wave across the imaging field during

the first iteration.

Table 1: Processing times

Table 2: Performance tabulation








mJ

j

j tsxstxuxvtxu
t 1

2

2

2

),,(),()(),(

)(1)(0 xfxv  

mJT],,0[

f (x)

mm gfR )(
gm

Rm

 )),(()(')(c *)1(k

mm

k

m

kk

d

k fRgfRcP 

u(x, t)

(A) (B)

(C)

Figure 2: Final reconstructed image

In our tests, our CUDA implementation of the algorithm was approximately

460x faster than the MATLAB version and approximately 52x faster than the C++

version. The actual execution times and performance improvements can be seen in

Table 1 and 2. Compared to a version of the imaging algorithm that does not

account for image sparseness, our tests showed a performance improvement of

2.4x with the CUDA implementations of both

algorithms (Table 3). This tangible performance

improvement did not result in any degradation

in the quality of the reconstructed image,

however. The final result of the reconstructed

 image made using the sparsity-aware algorithm

can be seen in Fig. 2.

Table 3: Performance of sparsity-aware algorithm vs. base algorithm

Platform MATLAB C++ CUDA

MATLAB 1 0.113 0.002

C++ 8.842 1 0.018

CUDA 459.957 52.020 1

http://www.facebook.com/pages/PosterPresentationscom/217914411419?v=app_4949752878&ref=ts

