GPU Accelerated, Sparse-Aware Ultrasonic Tomographic Imaging
Using the Propagation and Back Propagation Method

Agustin Rivera-Longorial, Mark ldleman?, Yuanwei Jin3, Enyue Lu?#

IDepartment of Computer Science, Texas State University, TX
’Department of Computer Science, Amherst College, MA

alisbur

3Department of Engineering and Aviation Sciences, University of Maryland Eastern Shore, MD

4 INTRODUCTION N\

Nvidia’s Compute Unified Device Architecture (CUDA) enables the parallel
processing of algorithms on consumer-level graphics processing units (GPUS).
CUDA uses a C-like programming model, giving developers a simple interface to
utilize the parallel capabilities of modern day GPUs. Processes that need to be run in
parallel are called on the CPU before being split up and run on the GPU; each parallel
orocedure is run on an individual thread, and threads are organized into groups called
nlocks. Data Is transferred between the CPU and the GPU through memory copies
and allocations. This means that CUDA programs can utilize both serial, CPU-hosted
functions and GPU-hosted parallel functions. The architecture also provides a shared
memory region for each block of threads, allowing for fast memory accesses across
multiple threads in a parallel program.

The CUDA programming model allows the general user to utilize the capabilities
of the GPU. The GPU’s unique parallel capabilities can be used in a wide range of
activities, including imaging, gaming, and computationally intensive applications.

PROBLEM DESCRIPTION

Medical imaging, gaming, and many other important real-world applications are
computationally demanding processes due to the large number of quick calculations
required at execution time. The introduction of GPUs has made It possible to
parallelize these computations at a very low cost. In past work, we developed an
Iterative algorithm for nonlinear ultrasonic Imaging using the propagation and
backpropagation (PBP) method, and demonstrated that a GPU implementation of the
algorithm could massively reduce the computation time.

In this work, we show that by Incorporating target sparseness into the ultrasonic
Imaging algorithm, we can further accelerate the convergence rate of the algorithm
by implementing it using a GPU.

The basis of the tomographic imaging problem starts with the following wave
propagation equation:

stzu(x,t) =Vv*(X)Au(X,t) + is(x, Si,t)

where wu(x,t) Is the acoustic field over Qx[0,T],J,, IS the number of simultaneous
excitation sources, v(x) = 1,4/1+ f (x) is the acoustic wave propagation speed, and f(x)
IS the acoustical potential function that we are reconstructing. The imaging problem
can also be presented as an inverse problem

R,(T) =0,

where g 1s the data collected at the sensors surrounding the imaging field and
R _1s a nonlinear operator. The solution to the sparsity-aware MIMO imaging
problem Is given by

c¥ =P, (s + 7 )R, (F)(9, — R, (F4)). 00,

where P,4(+) is the projection operator, y¥ is the steepest descent coefficient, and
k=0, 1, 2... is the iteration timestamp.

“Department of Mathematics and Computer Science, Salisbury University, MD

4 GPU IMPLEMENTATION N

For our CUDA implementation of the sparsity-aware MIMO PBP imaging
algorithm, we used the grid and block configuration that was found to have the best
performance with the version of the algorithm that does not account for sparsity. In
our implementation, each thread calculates a grid point (i.e. pixel) In parallel,
lowering the execution time substantially.

By introducing a sparsity constraint into the algorithm, we faced a new parallel
Implementation issue, the race condition. Race conditions occur when multiple
threads attempt to alter the same value In memory simultaneously, resulting iIn
random and incorrect results. To successfully parallelize this type of calculation, we
utilized parallel reduction, where partial sums are created in the shared memory of
each thread block, and then added together after being copied back to the CPU to
produce a final sum. Through the use of reduction, we achieved a speedup of
approximately 4 seconds with our CUDA implementation.

RESULTS

We successfully implemented the sparsity-aware PBP imaging algorithm on the
GPU. Our final results were benchmarked against both a MATLAB version of the
algorithm and a C++ version. Our tests were run on a GeForce GTX 670 GPU,
which has 1344 CUDA cores. We used a desktop computer with a quad core Xeon
microprocessor running at 2.27 GHz and 8.0 GB of RAM. The setup of the
Imaging field and the iterative reconstruction process can be seen in Fig. 1.

0.06 0.1 0.06
-0.08

0.05 0.0 0.05
-0.04

- 40.04 - 40.04

-0.1

-0.08

-0.06

-0.04
-0.02 -0.02

- 40.03 0 - 40.03

F 40.02
0.01
0

0.02 0.02

0.02 0.04
0.06
0.Mm
0.08
0.1 0 0.1

-0.1 -0.05 0 0.05 0.1 -0.1 -0.05 0 0.05 0.1

0.04

0.06

0.08

(A) (B)

(C)

Figure 1. Examples of the imaging field prior to running the imaging algorithm and during the
Iterative reconstruction process. (A) The ground truth image. (B) The ground truth with prior
knowledge of the target shown in green. (C) The reconstructed image during the first iteration of
the algorithm. From left to right, the results after j = 10, 30, 100, 300, and 600, respectively, where
J Is the number of excitation sources that have propagated a wave across the imaging field during
the first iteration.

s RESULTS (CONTINUED) N\

In our tests, our CUDA implementation of the algorithm was approximately
460x faster than the MATLAB version and approximately 52x faster than the C++
version. The actual execution times and performance improvements can be seen In
Table 1 and 2. Compared to a version of the imaging algorithm that does not
account for Image sparseness, our tests showed a performance improvement of
2.4x with the CUDA implementations of both
algorithms (Table 3). This tangible performance | - !

-0.06

Improvement did not result in any degradation

-0.02

In the quality of the reconstructed image, :
however. The final result of the reconstructed ]
Image made using the sparsity-aware algorithm = °*

0.08

Can be Seen In Flg 2 D'-10.1 -0.05 0 0.05 0.1

- 0.03

Figure 2: Final reconstructed image

| MATLAB CUDA

Time 05:52:38
(hh:mm:ss)

00:39:53 00:00:46

Table 1: Processing times

Platform MATLAB CUDA
1

MATLAB 0.113 0.002
C++ 8.842 1 0.018
CUDA 459.957 52.020 1

Table 2: Performance tabulation

_ Sparsity-Aware Algorithm | Base Algorithm

Time (hh:mm:ss) 00:00:46 00:01:50
Table 3: Performance of sparsity-aware algorithm vs. base algorithm
CONCLUSIONS

In this paper, we developed an effective GPU implementation of the sparsity-aware
propagation and backpropagation imaging algorithm. The initial version of the
algorithm, implemented in MATLAB, took just under six hours to complete. Our
final CUDA implementation took an average of 46 seconds to execute, giving us an
Improvement of approximately 460x. When compared to the base imaging algorithm
that doesn’t account for image sparsity, we found an improvement of approximately
2.4x with our CUDA Implementation, without compromising the quality of the
reconstructed image.

The iIntroduction of parallel sparse Imaging calculations resulted In race
conditions, which presented noticeable performance and accuracy problems. Parallel
reduction was used to successfully alleviate race conditions, providing accurate
results and improved performance.

ACKNOWLEDGEMENTS

The work 1s supported In part by the National Science Foundation under grant
no. CCF- 1156509 and CMMI-1126008, and the U.S. Army Research
Laboratory, the Office of Naval Research, and the Army Research Office under
grant no. W911NF-11-1-0160.



http://www.facebook.com/pages/PosterPresentationscom/217914411419?v=app_4949752878&ref=ts

