
Abstract:
Kernel Density Estimation is a process in which points plotted onto a

chart are assigned a percentage of their value to surrounding cells in the
chart, creating a large overlapping of data similar to a large Venn diagram of
the points. This allows observers to determine where the points of data
cluster the most on a geographic image. Kernel Density Estimation, or KDE,
provides far better visual results than a simple plotting of points, but uses up
far more computational resources.

This research project was designed to explore the potential speed
improvements and processing savings brought on by implementing a KDE
system in CUDA, a programming language developed by NVIDIA to run
parallel programs on their series of high power graphics processers. In order
to correctly test the effect of parallelization, code also had to be written to
test KDE data sets both in series and in parallel.

The experiment confirmed that using parallel processing improves run
time. However, it also showed that the number of calculations determined
by bandwidth used the most processing time in comparison to the number
of points or size of the grid.

Methods and Data:
Both serial and CUDA implementations of KDE were implemented using

C. Each implementation was evaluated based on the number of points
used, the size of the raster grid, and the bandwidth distance used to search
for points to include in the analysis.

The programs read a list of x,y coordinates as part of the KDE input, and
stores the points in an array for evaluation. The KDE function computes the
density of each focus cell based on the number of points contained in the
surrounding cells as defined by the bandwidth. As an example, a bandwidth
of 1 produces a 3 by 3 square of cells., while a kernel of 2 produces a 5 by 5
square of cells. Each increase in bandwidth dramatically increases the
number of computations for the focus cell. The number of calculations for
all cells in a grid is illustrated as bellow, where Δ is the bandwidth, W is the
density and N is the number of cells, and Xi is the ith cell within the
bandwidth. X is the focal cell.

Upon completion of the computations, the program then writes the final
grid into the output file.

Both serial and CUDA implementations were tested with a 1000x1000 grid
with point samples of 10000, 50000, 100000, and 200000 to determine the
sensitivity of processing a progressively larger number of points. Another
test was performed with 50000 points on 3 different grid cell sizes of
100,1000, and 5000 to evaluate the sensitivity of the grid size. Finally, a
5000x5000 cell raster was evaluated with bandwidth sizes of 1 (8
computations per point), 10 (99 computations per point), and 100 (9999
computations per point) to evaluate the sensitivity of the bandwidth size.

Improving Kernel Density Estimation Calculation Time by Parallel
Processing.

Adel Kamara, UMES Keith Benning, Messiah College
Dr. Arthur J. Lembo, Jr., Salisbury University (faculty mentor)

Analysis of Results:
The parallel code performed better than the serial code in terms of

processing a larger number of points, and a larger grid. However, the most
dramatic difference in processing time came when the bandwidth was
increased, tenfold each time. Increasing the bandwidth increases the
number of calculations required to process each cell. Serial code can only
process one cell at a time, whereas parallel can process multiple cells and
their calculations at a time using the large number of threads CUDA is
capable of running at the same time.

These results seem to indicate that the greatest performance achievement
comes within the context of the massive calculations performed when
increasing the bandwidth. As shown in Figures 1 and 2, moderate
improvements to KDE processing are achieved using CUDA, primarily because
there are relatively few computations per data element. Figure 3 shows the
dramatic increase in processing time when the bandwidth is increased, and
along with the bandwidth increase, an increase in the number of
computations. When tasks can be divided up between multiple processing
threads, the improvements in processing time are exponential and somewhat
startling.

Conclusion:
Parallelization is a revolutionary way of programming mathematically

based tasks, improving processing speed of programs that have problems
that can be broken up into individual tasks that can be done at the same
time.

Future experimentation might be geared towards improving upon the
systems established by this research project, both by improving the efficiency
of both sets of code through better programming, and increasing the
functionality of the software and its algorithms to obtain finer KDE graphs
once the program has finished executing. In particular, improvement on the
KDE algorithm for larger data sets would lead to faster, more accurate results
than what is currently in this project.

Figure 1: processing time for KDE on a 1000x1000 cell raster shows that
CUDA processing was 27% faster for various amounts of points.

Figure 2: processing time for KDE on a 5000x5000 cell raster shows that
CUDA processing was 45% faster for 50,000 points.

Figure 3: processing time for KDE on a 1000x1000 cell raster with 10,000
points and various bandwidth sizes. CUDA processing was dramatically
faster when the bandwidth was increased.

f^(x) =
1

nΔ

𝑖=1

𝑛

𝑤
x − 𝑋𝑖
Δ

0

200

400

600

800

1000

1200

1 10 20 40

5.9
73.7

279

1107

4.2 4.4 4.5
6.7

TI
M

E
IN

 S
EC

O
N

D
S

BANDWIDTH

SERIAL

CUDA

Bibliography:

• "CUDA by Example: An Introduction to General-Purpose GPU Programming", Jason Sanders, Addison-
Wesley Professional, 2010

 Hotspot Analysis Based Partial CUDA Acceleration of HMMER 3.0 on GPGPUs. International Journal
of Soft Computing and Engineering, 2, 91-95. Retrieved June 9, 2014, from
http://www.ijsce.org/attachments/File/v2i4/D0894072412.pdf

 Hotspot mapping using Kernel Density Estimation (KDE). (2005, August 12). Retrieved June 9, 2014,
from http://www.cadcorp.com/pdf/BR-Hotspot-Mapping-Using-KDE.pdf

• Kernel Density Estimation. (2014, January 1). . Retrieved August 1, 2014, from
https://onlinecourses.science.psu.edu/stat464/node/88

