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Abstract 
 
The Quadratic Sieve is used to increase the 
efficiency of factoring semi-primes that are 
usually used in cryptography. The algorithm for 
the sieve has many steps that can be 
parallelized. Due to this, efficiency can be 
increased if these steps are computed on the 
GPU.  

Goals 
 
•  Learn CUDA 
•  Implement the Quadratic Sieve on the CPU 
•  Implement the Quadratic Sieve on the  GPU 
•  Implement the Quadratic Sieve as a 

combination of CPU and GPU 

Conclusions 
 
Parallelizing the Quadratic Sieve on the GPU 
became faster as the digit count increased. 
Initially, the parallelized Brute Force on the CPU 
was faster since it takes time to transfer data to 
the GPU. 

Results 
 
Brute Force did jumps on time on even 
numbers when both factors had high digit 
counts. The Quadratic Sieve started slower 
because it had to generate test values then 
compare them. As the digits count increased 
the Quadratic Sieve became quicker compared 
to Brute Force. 
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Future Work 
 
•  Generate a library for the GPUPrec code 
•  Continue to improve the efficiency of the 

Quadratic Sieve on the GPU 
•  Other factoring methods such as Elliptic 

Curve and other sieving methods 
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Additions Multiplicatio
ns Divisions 

GPUPrec 153320.6179 8694.285281 7281.838309 
Integers 12470424905 12484855489 9358545651 
Long 12412168421 12302482887 9358541167 
Float 12506417114 12443488914 10541142006 
Double 6384091008 6493728873 6499560587 
MPIR 5839187.357 3994582.448 2587401.584 
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Additions Multiplicatio
ns Divisions 

GPUPrec 153320.6179 8694.285281 7281.838309 
MPIR 5839187.357 3994582.448 2587401.584 
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Algorithm 
•  x2 ≅	
 y2 (mod n ) 
•  x ≆ y (mod n ) 
•  GCD(x – y, n ) = p  so p|n 
Procedure 
•  x2  = z (mod n ) with z  = p1

 α1p2
α2 

p3
α3…pk

αk such that p1, p2, p3,…, pk ≤ Upper 
Prime Bound 
•  Floor(√(n*i)  + j)  = x  
•  i is moderate in size 
•  j is small in size (1≤ j ≤100) 
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