
CPU/GPU Workload Distributions for Sieve Factoring Methods
Zachary Johnson Salisbury University

Mentor: Dr. Don Spickler

Abstract

The Quadratic Sieve is used to increase the
efficiency of factoring semi-primes that are
usually used in cryptography. The algorithm for
the sieve has many steps that can be
parallelized. Due to this, efficiency can be
increased if these steps are computed on the
GPU.

Goals

•  Learn CUDA
•  Implement the Quadratic Sieve on the CPU
•  Implement the Quadratic Sieve on the GPU
•  Implement the Quadratic Sieve as a

combination of CPU and GPU

Conclusions

Parallelizing the Quadratic Sieve on the GPU
became faster as the digit count increased.
Initially, the parallelized Brute Force on the CPU
was faster since it takes time to transfer data to
the GPU.

Results

Brute Force did jumps on time on even
numbers when both factors had high digit
counts. The Quadratic Sieve started slower
because it had to generate test values then
compare them. As the digits count increased
the Quadratic Sieve became quicker compared
to Brute Force.

References

•  GPUPrec Source Code and Documentation.
•  MPIR Source Code and Documentation.
•  Wade Trappe and Lawrence C.Washington,

Introduction to Cryptography with Code
Theory, 2 ed., Pearson Education, 2006.

•  CUDA by Example: An Introduction to
General-Purpose GPU Programming (29
July 2010) by Jason Sanders, Edward
Kandrot

Future Work

•  Generate a library for the GPUPrec code
•  Continue to improve the efficiency of the

Quadratic Sieve on the GPU
•  Other factoring methods such as Elliptic

Curve and other sieving methods

0
25
50
75

100
125
150
175
200
225
250
275
300

10 11 12 13 14 15 16 17 18 19

Ti
m

e
in

 S
ec

on
ds

Number of Digits

Brute Force

BF GPUPrec CPU
Parallel

BF GPUPrec CPU
Serial

BF GPUPrec GPU Only

0

1

2

3

4

5

6

7

8

9

10

10 11 12 13 14

Ti
m

e
in

 S
ec

on
ds

Number of Digits

Quadratic Sieve

GPUPrec QS Parallel
Factor RelSeq

QS CPU MPIR Serial

QS CPU Arprec Serial

QS CPU Java Serial

0

1

2

3

4

5

6

10 11 12 13

Ti
m

e
in

 S
ec

on
ds

Number of Digits

CPU

BF GPUPrec CPU
Parallel

BF GPUPrec CPU
Serial

QS CPU MPIR Serial

QS CPU Arprec Serial

QS CPU Java Serial

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

10 11 12 13 14
Ti

m
e

in
 S

ec
on

ds

Number of Digits

GPU

BF GPUPrec GPU Only

GPUPrec QS Parallel
Factor RelSeq

Setup Generate
Test Values

Square & Mod
Test Values

Factor

Extract
Small Prime
Factorization

Find Possible
Relations

Test End

Setup

Generate
Test Values

Square & Mod
Test Values

Factor
Extract
Small Prime
Factorization
(Serial)

Find Possible
Relations Test End Find Possible
Relations

Square & Mod
Test Values

Generate
Test Values

Factor

Serial
Work

Serial
Work

Additions Multiplicatio
ns Divisions

GPUPrec 153320.6179 8694.285281 7281.838309
Integers 12470424905 12484855489 9358545651
Long 12412168421 12302482887 9358541167
Float 12506417114 12443488914 10541142006
Double 6384091008 6493728873 6499560587
MPIR 5839187.357 3994582.448 2587401.584

0
2E+09
4E+09
6E+09
8E+09
1E+10

1.2E+10
1.4E+10

O
pe

ra
tio

ns

 p
er

 S
ec

on
d

Raw Speeds

Additions Multiplicatio
ns Divisions

GPUPrec 153320.6179 8694.285281 7281.838309
MPIR 5839187.357 3994582.448 2587401.584

0
1000000
2000000
3000000
4000000
5000000
6000000
7000000

O
pe

ra
tio

ns

pe
r S

ec
on

d

High Percision

Algorithm
•  x2 ≅	
 y2 (mod n)
•  x ≆ y (mod n)
•  GCD(x – y, n) = p so p|n
Procedure
•  x2 = z (mod n) with z = p1

 α1p2
α2

p3
α3…pk

αk such that p1, p2, p3,…, pk ≤ Upper
Prime Bound
•  Floor(√(n*i) + j) = x
•  i is moderate in size
•  j is small in size (1≤ j ≤100)

Setup
Generate
Test Values

Square & Mod
Test Values

Factor Extract
Small Prime
Factorization

Find Possible
Relations

Test End

