
ONoC Software

Software for Simulation and Performance Evaluation of the Reconfigurable ONoC
Malik Malone (Undergraduate), Tim Travitz (Undergraduate), Dr. Lei Zhang (Faculty Mentor)

Depts. of Mech. & Computer Engineering , University of Dayton, Dayton, USA

Dept. of Elect. & Computer Engineering, Case Western Reserve University, Cleveland, USA

Dept. of Computer Engineering, University of Maryland Eastern Shore, Princess Anne, USA

Introduction
As technology continues to increase in complexity, computers and

processors are expected to stay reliable by increasing in speed and

adhering to strict power limits. Recently, processing clock speeds have

begun to plateau. Network on chip (NoC) architectures have been

considered as a possible solution. Unfortunately, the metallic

interconnections’ between the cores introduces issues such as high power

consumption, high latency, and increasing complexity that inhibit this

approach’s effectiveness. A promising solution in response to these

issues is the Optical Network on Chip (ONoC); these networks utilize

optical interconnections, instead of metallic wiring. ONoCs have

attracted attention due to their potential for low power consumption, high

bandwidth, and low latency architectures.

Problem Description
NoCs with optical interconnections can be further improved by

rearranging the cores on the network to respond to the activity of the

application that is currently running on the network. We have developed

software tool that can be used to simulate and test the performance of a

multi-core Ouroboros ONoC in order to find an improved solution of

core arrangements for a given application data log. In this poster we

present some of the results we have obtained utilizing our software given

a Barnes workload from the SPLASH-2 benchmark.

Results

Future Work
We plan to use the tools to find optimized core arrangements for other

SPLASH-2 benchmarks. We also hope to find and identify a pattern

based on sections of the data log and utilize it in our model. This would

allow us to dynamically find the best configuration for the position of the

nodes in a network during simulation time.

Acknowledgements
This research was funded by the NSF under grant no. CCF-1460900, and

hosted by Salisbury University for the EXERCISE (Explore Emerging

Computing in Science and Engineering) program.

fig. 6

Simulator
To test the theoretical results of an optical network on chip

(ONoC) architecture we developed a tool which allowed us to

simulate this theoretical setup. Our program allows us to feed it

actual log data files from an electrical NoC architecture to

simulate the same events on a theoretical Ouroboros ONoC

architecture. When simulating a cyclic architecture we can

configure our simulation to tell it where to place specific IP

nodes in the layout. The software also allows for parameters like

flit packet size, number of cycles for teardown time, and number

of nodes in a specific architecture to be set and configured.This

allows us to easily setup and test specific node configurations

with our real-life log data. Fig. 3 shows a basic overview of our

simulator structure

fig. 5

https://github.com/timfoil/PhotonicCoreSimulator

fig. 1

Genetic Algorithm
 We created a genetic algorithm to provide insights on what

specific node configurations would perform better than

others. Some results are shown in fig. 5 and 6. These tools

and applications have been developed in Java and have been

extensively documented using Java’s Javadoc

documentation generator. This will hopefully allow for our

program to be utilized or extended upon by researchers

interested in this topic in the future.. The code is currently

publicly available on github and can be viewed and

downloaded by using the link or QR code in the bottom left

corner.

Log Analysis
The log analysis tool takes real-life NoC log output, and can

perform various experiments to gain specific insights on the

read log data. This analysis tool can allow us to analyze the log

or certain sections of the log for insights on the cores that

send/receive the most data, the pairs of cores that send/receive

the most data, (see fig 1.) and determining sections of the log

where particular core sends large amounts or bursts of data.

These functions help to provide insights on how to reorganize

node configurations near each other. Thus optimal

reconfiguration solutions can be found that have low latency

values.

fig5. and fig.6

The y axis represents the fitness of a generation (where a lower fitness

number is preferred) and the x axis represents the generation number. Each

line represents a parent chosen from that generation (the best 2 individuals of

that generation plus the all-time best configuration).

Figure 5 shows the results from 100 generations of 30 individuals per

population for the genetic algorithm. Figure 6 can be seen as the control.

The data analyzer has a feature that enumerates the dominant flow pairs from greatest to least (fig. 1). One can see core

(1,1) is clearly the most active node of the network. Using the simulator, we attempted to exploit the dominant flow pairs of

core (1,1) by reconfiguring the network into the ‘Priori DF’ and ‘Spaced DF’ arrangements, The Priori arrangement, (seen

in fig. 4), core (1,1) is labeled as a red 1 and its corresponding most dominant flow partner core is highlighted in gold. The

latency comparison of the arrangements in fig. 4, can be seen in fig. 2.

fig. 2

fig. 4

fig. 3

https://github.com/timfoil/PhotonicCoreSimulator
https://github.com/timfoil/PhotonicCoreSimulator

