
GIS based terrain analysis with GPU and CPU strategies
Alex Fuerst1, Charles Kazer2, and William Hoffman3.

Faculty Advisor: Arthur Lembo3

1Xavier University, 2Swarthmore College, 3Salisbury University

Introduction
 Previous research has shown that the benefits of using GPU based
calculations in GIScience for embarrassingly parallel tasks related to
terrain modeling yields impressive results. Further, the integration of
CUDA into more user-friendly programming languages like Python allow
novice programmers to leverage the power of parallel processing for GIS.
The widespread adoption of free, open source software for GIS provides
a great opportunity to integrate CUDA GIS processing into open source
projects.
 The goal of this research was to create an open source plug-in, written
in Python and PyCUDA, that would enable QGIS to run CUDA driven
terrain analysis from the desktop software. The algorithms were written
to run in parallel (PyCUDA) and tested against the serial QGIS
implementation (C++) in order to evaluate the benefits of the parallel
implementation.

Methods
 Figure 1 shows our design model. There are three main processes, the
data loader, the data saver, and GPU manager. Broadly, the data loader
is responsible for loading data from disk and formatting from its initial file
type, the data saver is responsible for compressing and saving data back
to disk, and the GPU manager is responsible for running GPU tasks,
including copying data to and back from the GPU. The three processes
run independently, so data can be loaded from disk, calculations can be
performed on the GPU, and data can be saved to disk all simultaneously.
This provides parallelism both on the CPU for I/O, and on the GPU for
calculations, improving overall computation time. The encapsulation of
the three processes allows for readability and simple modification.

The GPU manager runs the GPU kernel. It can calculate slope, aspect,
or hillshade on raster files. The kernel was designed to be easily
modifiable so that any calculation on a 3x3 grid around a pixel can be
performed -- all of the data management and indexing is handled by the
kernel already, and a separate function can be written for any desired
algorithm.

Results
Tests were run on PCs running Linux with NVIDIA GTX 670 GPUs with

1344 cores and 2GB of GPU RAM, Intel Xeon E5607 processors with 4 cores
running at 2.27 GHz, and 8 GB of main memory reading from and writing to a
HDD.

PyCUDA is significantly faster than QGIS when computing both slope
and hillshade. The tables below represent the times to compute slope and
hillshade on a 1.5 GB raster file. PyCUDA finishes in ⅓ the time of the serial
version or better. Looking at just the computation time, the GPU was able to
compute hillshade for the 1.5 GB file in under 2 seconds. The rest of the time
spent was mostly copying data.

These time gains are less drastic for larger files unfortunately, due to the
I/O bottlenecks, though still an improvement over serial. A 12 GB file was
completed by QGIS in 45 minutes, whereas PyCUDA took roughly 28
minutes to complete.

References
1. S. P. Kirby, W. B. Kostan, and A. J. Lembo, “High performance desktop computing with video gaming cards:

Parallelizing raster based functions in gis,” 2013.
2. A. Klockner, N. Pinto, B. Catanzaro, Y. Lee, P. Ivanov, and A. Fasih, “Gpu ̈scripting and code generation with

pycuda,” GPU Computing Gems Jade Edition, pp. 373–385, 2012.

Acknowledgements
We would like to thank Dr. Lembo for his careful mentoring and useful insight
throughout this project. We would also like to thank the NSF for funding our
REU research. NSF Award # 1460900

Conclusions and Considerations
Parallel processing can easily beat serial methods when performing

raster analyses. Additional complex functions expand this difference even

further. Hillshade requires roughly 45 calculations per element to

complete and is no slower than slope which only requires 15. A function

that needed hundreds of steps per element would be perfect for

adaptation to GPU useage.

Even using just CPU parallelization improves the speed of the

calculations. Reducing the I/O bottleneck will yield even greater

improvements. This project shows that the introduction of multithreading

into GIS applications is very effective.

The code was written under open-source guidelines so that the

community can examine and try it out for themselves. We chose Python

specifically due to its readability, ease of development, and widespread

use in the GIS community. We hope that others in the GIS community

can expand on the work we have done to make this code even better and

increase the number of raster analyses it can do. It is all available on

github at

https://github.com/aFuerst/PyCUDA-Raster.

Discussion
Python is a significantly slower language than either C++ or C. A pure

Python implementation of slope and hillshade are nearly 10 times slower
than C++. Leveraging PyCUDA and Numpy, which are libraries written in
C and designed to be heavily optimized, helped reduce the slowdown
from Python. However, even with the many optimized libraries we used,
and optimizations we built in ourselves, a well tuned python library will
always be slower than the equivalent C code.

Once the data starts being processed on the GPU is when significant
time differences become apparent. While QGIS slowed down when
calculating hillshade, a more computationally expensive algorithm than
slope, the PyCUDA implementation ran in the same amount of time,
indicating that the GPU parallelization has not taxed the computational
power of the card.

The majority of time is spent on disk I/O, reading and writing data off of
permanent storage. We were able to reduce this by reading in large
amounts of data per call to disk. Using SSDs further mitigates the I/O
problem, as they have much better read times than traditional disk drives,
though we’re unsure why our implementation doesn’t benefit from using
SSDs.

Function PyCUDA QGIS

Input 1:55 2:00

Computation 1:00 5:00

Output 2:20 2:00

TOTAL Time 3:35 9:00

Function CUDA QGIS

Input 1:55 2:00

Computation 1:00 7:00

Output 2:20 2:00

TOTAL Time 3:35 11:00

Table 2: A comparison of our PyCUDA
implementation vs. QGIS calculating
hillshade showed that the CUDA
version was significantly faster.

Table 1: A comparison of our PyCUDA
implementation vs. QGIS calculating
slope showed that the CUDA version
was slightly faster QGIS.

Figure 1: Program model

Figure 2: Visualization of Input/Output

Altitude Slope Hillshade

Table 3: A comparison
of our PyCUDA
implementation vs.
QGIS when running
from an SSD. QGIS
was 3X faster in this
regard.

Function PyCUDA QGIS

Slope 3:01 1:00

Hillshade 2:55 1:00

