
Testing and Model Checking Concurrent Software

Gregory Beale1; Ariel Virgulto2; Dr. Steven Lauterburg3

1Randolph-Macon College, 2Univeristy of Connecticut, 3Salisbury University

<Dr. Steven Lauterburg>
<Salisbury University>
Email: stlauterburg@Salisbury.edu
Website: http://faculty.salisbury.edu/~stlauterburg/

Contact

1. “Documentation.” Documentation | Akka. N.p., 2011-2017. Web. 20 July 2017. http://akka.io/docs/.
2. NASA.“JPF–Actor.”2010. https://babelfish.arc.nasa.gov/trac/jpf/wiki/projects/jpf-actor.
3. Lauterburg, Steve. “Systematic Testing for Concurrent Software.” 7 July 2017, PowerPoint File.

References

Despite advances in software, development environments, and hardware,
programs continue to have errors. Testing software is important to ensure
programs run efficiently and predictably. Concurrent programming,
specifically message passing, can complicate system and model states
through asynchronous message passing. JPF-actor (Basset) is a tool that
allows users to systematically test actor programs in both Java and Scala.
However, as new versions of Scala, Java, and JPF have been released, JPF-
actor has not been updated, rendering it obsolete. We seek to rewrite and
restore the compatibility of the Basset toolkit with the new Akka actor
protocols and libraries instantiated within concurrent Scala and Java
programs.

Abstract

Introduction

Actor Messaging Programming

Actors communicate solely by passing messages back and forth. These
messages are stored in each other’s mailbox, however, there is no guarantee
that messages are delivered in the order in which they are sent. [3] JPF-actor
looks to see if this will cause problems by exploring all the “relevant” message
schedules between actors. Fig. 3 illustrates a simple state exploration
diagram. [3] From this mailbox, actors dequeue and process each message
one at a time. Actor programs have non-determinism as a result of the order
in which messages are delivered, not the ordering of shared memory access.
[3] The lack of method calls between calls allows for encapsulation without
resorting to blocking or locks in a hierarchical structure as illustrated in Fig. 1.
[1] An illustration of message passing between actors is shown in Fig. 2. [1]

JPF-actor Functionality

Compatibility between software is the main problem we are attempting to
correct. The JPF-actor software was created in 2010 to work with older
versions of JPF, Java, ActorFoundry, and, Scala which have all since been
updated, except JPF-actor. [2] ActorFoundry is no longer used, and Scala has
been updated to use Akka’s message passing protocols, libraries, and
foundations. Basset will currently not work with any of these languages and
tools. Thus, JPF cannot test any software that implements actors for
concurrent programming, leaving a large hole in its functionality. Updating
JPF-actor will require an overhaul of the testing features in accordance to
Akka’s message passing libraries and protocols.

Problems
The first step to restoring compatibility for JPF-actor is to understand the new
message passing protocols that are present in Akka’s actor libraries. With
online resources from Akka, we developed a number of Java and Scala
implementations of old actor programs written in ActorFoundry. These
included a Pi Calculation, Fibonacci Number Calculator, QuickSort, MergeSort,
and Chameneos, all using the modern Akka library for actors. Implementing
these programs offers a way to explore the hierarchy and the power of actor
programming. The Pi Calculator illustrates the basic reduction in overhead run
time that is achieved by using concurrent software. The Fibonacci program
results in the top down creation, then termination, of thousands of actors to
calculate a certain Fibonacci number, showing the scalability of any actor
program. The out-of-order-message delivery is illustrated and utilized in the
concurrency game Chameneos. JPF-actor can build from and utilize these
concurrent programs, which demonstrate key aspects of the Akka language
for actors, in order to retain compatibility with Java and Scala.

Method and Preliminary Results

Software-testing and model-checking is necessary to ensure the accuracy and
sustainability of concurrent programs, especially because JPF was developed
overall as a test kit by NASA. Compatibility is also important to keep up as
software is constantly being improved. As a long-term project, we are at the
beginning of exploring the new message-passing protocol implemented in
Scala through Akka. These programs represent the beginning of Dr.
Lauterburg’s effort to update JPF-actor to accommodate Java 8 and the
updated Akka and Scala languages. Future work on JPF-actor will build the
groundwork of the basic Akka programs we have developed. Once JPF-actor is
updated, it will have the functionality to test different Akka programs to make
sure they are defect- and error-free.

Conclusion and Future Work

Advances in programming languages, development environments, and
hardware have necessitated software testing to ensure error-free models and
programs. Multiple, faster processors in computing cores allow for quicker
builds and faster run times. As a result of smaller wait times, the debugging
process can be more extensive and quicker. Message passing, as a form of
communication between cores and systems, is used in both parallel and
distributed applications, which have become increasingly popular since the
speed of single processors and transistors has plateaued in the last decade. In
parallel computing, all processors have access to shared memory, while in
distributed computing, each processor has private memory and passes
messages between each other in order to communicate. Message passing
communication is becoming more prevalent as distributed systems grow in
use. Java Path Finder (JPF) is a program used to verify concurrent programs,
written mostly in Java and Scala. JPF’s main goal is to find and alert the user to
a number of defects or pitfalls that could affect the performance of
concurrent programs. JPF uses model-checking method that systematically
explores all relevant message schedules in actor programs. However, JPF’s
actor module, designed to specifically test concurrent software that uses
actors, is out-of-date and needs to be updated for compatibility Akka and
Scala’s actor library. Developing a basic understanding of the protocols and
design behind Akka’s actor implementation is the first step to restoring JPF’s
functionality in a world growing increasingly favorable of actor-oriented
distributed computing.

Figure 1. Actor Hierarchy

Figure 2. Message Passing Behavior between Actors

Figure 3. JPF-actor exploring different message schedules

Figure 4. Actor Model Trait Exemplified

http://faculty.salisbury.edu/~stlauterburg/
http://akka.io/docs/
https://babelfish.arc.nasa.gov/trac/jpf/wiki/projects/jpf-actor

