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The stable matching problem has many practical applications 

to real-time systems. However, the existing algorithms that 

solve this problem are infeasible for these systems because 

they require too much time. Previous work on algorithms with 

an acceptable time bound are unable to compute a stable 

matching for all inputs.

We propose a parallel iterative improvement algorithm that 

solves the stable matching problem with a higher success rate 

than previous algorithms within 𝑶(𝒏 𝒍𝒐𝒈 𝒏) runtime using 𝒏𝟐

processors. We address some unsolved cases enumerated by 

previous work on this problem. However, our algorithm is 

unable to determine a stable matching with 100% success 

rate; further investigation of a new method is required.

Objective

The purpose of our work is to find an algorithm that can correct 

the irregular cases left by previous work in order to achieve 

100% success in finding a stable matching. In order to do this, 

we will need to be able to detect each type of irregularity and 

be able to derive a matching from these cases. This algorithm 

will have a runtime of 𝑂(𝑛 𝑙𝑜𝑔 𝑛) and use 𝑛2 processors.

Introduction

The stable matching problem was first introduced by Gale and 

Shapley in 1962. A matching a set of pairs of men and women

in which each man and woman is part of exactly one pair. An 

unstable pair is a man and woman who are not paired together, 

but both prefer each other to their current partners. A matching 

is stable if the matching has no unstable pairs.

One real-time application of solutions to the stable matching 

problem is switch scheduling for packet/cell switches. While the 

Gale-Shapley algorithm serves as a proof that a stable matching 

exists for any group of people, its Θ(𝑛2) runtime makes it 

infeasible for use in real-time systems.

Prior work in developing a parallel iterative improvement 

algorithm to solve this problem has been done by Dr. Enyue Lu 

and Colin White. The algorithm has two phases: initiation and 

iteration. In the initiation phase, an initial matching is derived 

for the men and women. In the iteration phase, a better 

matching is derived from the existing matching. The iteration 

phase continues until a matching is successfully found.

Our goal is to find an implementable algorithm that can 

determine a stable matching within 𝑂(𝑛 𝑙𝑜𝑔 𝑛) runtime using 

𝑛2 processors. This runtime and required amount of 

computational resources is acceptable for real-time systems.

Our algorithm is an improved version of the prior algorithms 

that accounts for cases in the cycle detection that were not 

previously handled. After having classified these types of cycles 

which could not be solved by previous algorithms through Colin 

White’s work and our own battery of tests, we developed 

improvements to the previous algorithm that would determine 

when one of these cases would occur and apply the correct 

solution.

We were able to resolve cases in which two cycles, figure eights, 

three in a row, and dead ends occur. For two cycles, all four 

combinations of selecting every other pair result in a stable 

matching. Figure eights are corrected by simply ensuring no

pair is selected twice. When three pairs in a row are part of

the cycle, selecting the center pair ensures that no two pairs 

from the same row are selected, resulting in a stable matching. 

Finally, when a dead end occurs, we select the first pair in the 

row of three in order to derive a valid matching.
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Figure 1. An example of the 
iteration phase. Each matching 
is derived from the previous 
matching until the matching
is stable.

Acknowledgements

This work is funded by NSF CCF-1460900 under Research 

Experiences for Undergraduates Program. B. Hurlburt and R. 

Yost did their work as REU students at Salisbury University 

during the summer of 2017.

The original algorithm failed at a rate of approximately 10% due 

to cycling. This occurs when the matching derived in the 

iteration phase is a matching that has already been visited. 

Further work introduced cycle detection to mitigate this 

problem. For the majority of cycles, simply selecting every other 

pair in the cycle to be part of the derived matching will yield a 

stable matching. While these improvements reduce the rate of 

failure to approximately 1/400, this does not work for 

irregularly formed cycles.

when one person is part of the cycle three times. A dead end is 

when the cycle splits into two possible paths, where one is a 

dead end. A long cycle is a cycle of length at least 2𝑛.

Problem

The major irregularity occurs when the 

iteration step results in a hole, where a 

man and a woman are left unpaired.

Other cases of irregularity in the 

formation of cycles include two cycles, 

figure eight, three in a row, dead ends, 

and long cycles.

Two cycles simply means that two 

independent cycles are formed. A figure 

eight is when two cycles form with one 

pair in common. Three in a row occurs

Figure 2. An example of a 
hole. In this case, a stable
matching can be derived 

by filling in the hole.

Conclusions

We were unable to resolve cases in which long cycles and 

certain types of holes appear. For long cycles, certain pairs must 

be skipped when selecting members of the new matching, but it 

is unclear which pairs should be skipped and which should be 

selected. In most occurrences, holes can be corrected by simply 

pairing the two unpaired people, resulting immediately in a 

stable matching. However, filling in the hole occasionally results 

in another cycle. At this point, the newly created cycle must be 

resolved; however, this may lead to a state that has already 

been visited.

Because we were unable to resolve these cases, our improved 

algorithm was unable to derive a stable matching with 100% 

success rate. Although the improvements reduce the probability 

of failure, further analysis will be required to resolve all 

irregularity cases and achieve a 100% success rate.
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