
Parallel Iterative Improvement Stable Matching Algorithms
Blake Hurlburt1, Ryan Yost2, Dr. Enyue Lu3

1 University at Buffalo 2 Hampden-Sydney College 3 Salisbury University

The stable matching problem has many practical applications

to real-time systems. However, the existing algorithms that

solve this problem are infeasible for these systems because

they require too much time. Previous work on algorithms with

an acceptable time bound are unable to compute a stable

matching for all inputs.

We propose a parallel iterative improvement algorithm that

solves the stable matching problem with a higher success rate

than previous algorithms within 𝑶(𝒏 𝒍𝒐𝒈 𝒏) runtime using 𝒏𝟐

processors. We address some unsolved cases enumerated by

previous work on this problem. However, our algorithm is

unable to determine a stable matching with 100% success

rate; further investigation of a new method is required.

Objective

The purpose of our work is to find an algorithm that can correct

the irregular cases left by previous work in order to achieve

100% success in finding a stable matching. In order to do this,

we will need to be able to detect each type of irregularity and

be able to derive a matching from these cases. This algorithm

will have a runtime of 𝑂(𝑛 𝑙𝑜𝑔 𝑛) and use 𝑛2 processors.

Introduction

The stable matching problem was first introduced by Gale and

Shapley in 1962. A matching a set of pairs of men and women

in which each man and woman is part of exactly one pair. An

unstable pair is a man and woman who are not paired together,

but both prefer each other to their current partners. A matching

is stable if the matching has no unstable pairs.

One real-time application of solutions to the stable matching

problem is switch scheduling for packet/cell switches. While the

Gale-Shapley algorithm serves as a proof that a stable matching

exists for any group of people, its Θ(𝑛2) runtime makes it

infeasible for use in real-time systems.

Prior work in developing a parallel iterative improvement

algorithm to solve this problem has been done by Dr. Enyue Lu

and Colin White. The algorithm has two phases: initiation and

iteration. In the initiation phase, an initial matching is derived

for the men and women. In the iteration phase, a better

matching is derived from the existing matching. The iteration

phase continues until a matching is successfully found.

Our goal is to find an implementable algorithm that can

determine a stable matching within 𝑂(𝑛 𝑙𝑜𝑔 𝑛) runtime using

𝑛2 processors. This runtime and required amount of

computational resources is acceptable for real-time systems.

Our algorithm is an improved version of the prior algorithms

that accounts for cases in the cycle detection that were not

previously handled. After having classified these types of cycles

which could not be solved by previous algorithms through Colin

White’s work and our own battery of tests, we developed

improvements to the previous algorithm that would determine

when one of these cases would occur and apply the correct

solution.

We were able to resolve cases in which two cycles, figure eights,

three in a row, and dead ends occur. For two cycles, all four

combinations of selecting every other pair result in a stable

matching. Figure eights are corrected by simply ensuring no

pair is selected twice. When three pairs in a row are part of

the cycle, selecting the center pair ensures that no two pairs

from the same row are selected, resulting in a stable matching.

Finally, when a dead end occurs, we select the first pair in the

row of three in order to derive a valid matching.

Newly-matched pairCurrent matching pair

Iteration 1 Iteration 2 Iteration 3

Iteration 4 Iteration 5

Figure 1. An example of the
iteration phase. Each matching
is derived from the previous
matching until the matching
is stable.

Acknowledgements

This work is funded by NSF CCF-1460900 under Research

Experiences for Undergraduates Program. B. Hurlburt and R.

Yost did their work as REU students at Salisbury University

during the summer of 2017.

The original algorithm failed at a rate of approximately 10% due

to cycling. This occurs when the matching derived in the

iteration phase is a matching that has already been visited.

Further work introduced cycle detection to mitigate this

problem. For the majority of cycles, simply selecting every other

pair in the cycle to be part of the derived matching will yield a

stable matching. While these improvements reduce the rate of

failure to approximately 1/400, this does not work for

irregularly formed cycles.

when one person is part of the cycle three times. A dead end is

when the cycle splits into two possible paths, where one is a

dead end. A long cycle is a cycle of length at least 2𝑛.

Problem

The major irregularity occurs when the

iteration step results in a hole, where a

man and a woman are left unpaired.

Other cases of irregularity in the

formation of cycles include two cycles,

figure eight, three in a row, dead ends,

and long cycles.

Two cycles simply means that two

independent cycles are formed. A figure

eight is when two cycles form with one

pair in common. Three in a row occurs

Figure 2. An example of a
hole. In this case, a stable
matching can be derived

by filling in the hole.

Conclusions

We were unable to resolve cases in which long cycles and

certain types of holes appear. For long cycles, certain pairs must

be skipped when selecting members of the new matching, but it

is unclear which pairs should be skipped and which should be

selected. In most occurrences, holes can be corrected by simply

pairing the two unpaired people, resulting immediately in a

stable matching. However, filling in the hole occasionally results

in another cycle. At this point, the newly created cycle must be

resolved; however, this may lead to a state that has already

been visited.

Because we were unable to resolve these cases, our improved

algorithm was unable to derive a stable matching with 100%

success rate. Although the improvements reduce the probability

of failure, further analysis will be required to resolve all

irregularity cases and achieve a 100% success rate.

ResultsAbstract

