
Nicholas Conrad (Elon University), Lei Zhang (UMES)

Reconfigurable Optical

Networks-on-Chip

OUROBOROS NETWORK

We designed a simulator to test the re-

configurability of an optical N-o-C for an

Ouroboros network. The simulator receives

a data file of requests to process and then

simulates how an actual architecture of this

design would function giving us (cost of

transmissions and wait times) to answer two

questions: “How should a network be

reconfigured based on a file?” and “Is it

worth it?”.

ABSTRACT

An Optical Network has a Head Core (HC)

and multiple Body Cores. They are all

connected to a ring that changes how the

cores connect to each other based on wave

guides. Each core can be connected or it can

be bypassed. With this setup data can be

transferred between any two cores as long as

all of the cores in between those two are

bypassed. The HC coordinates and controls

the placement of these nodes and all of the

data flow. With this type of network multiple

sets of data can be run in parallel.

Results

The network has two basic reconfiguration

modes, ‘Order’ and ‘Territory’. The ‘Order’

mode allows for any or all nodes to change

position to a specified location, thereby

allowing two nodes that communicate a lot

to be right next to each other. In the

‘Territory’ mode, the network can be split

into multiple subnetworks then

interconnected to allow the same result. The

simulator I designed uses ‘Order’.

Reconfiguration

Creating this simulator allows us to see that

a reconfigurable optical network-on-chip can

drastically improve the performance of

different programs. It allows us to see that

changing the placement of the nodes

(depending on an incoming file), and adding

frequencies to allow for wave-division-

multiplexing (depending on the file and

configuration) reduce wait time immensely

and are definitely worth it. Now we will need

to determine how to find the optimal

attributes and configurations based on the

incoming file.

SUMMARY

Through the testing of several files with

different configurations we have found that

we can reduce the wait time by a huge

amount. We have also determined that

wave-division-multiplexing can reduce the

wait time drastically depending on the

configuration and file. Our third conclusion,

to our surprise, is that cost and waiting time

are not related at all! Instead, to reduce

waiting time and figure out an optimal

configuration we must base it off the timing

and overlapping of requests.

Examples of a 16-node ON Reconfiguration

Separated into three files written in python

2.7: Config.py, Request.py, Simulation2.py.

The config.py file handles all constants

related to the machine being used and

options to change how the data is looked at

to determine the change in performance.

One of these constants is one that controls

wave-division-multiplexing (allowing more

than one frequency to travel in the same

space).

The request file handles the adding and

removing of requests on and off the

network(s).

The simulation file handles the

reconfiguration of the nodes. It keeps the

timing of all of the data. Controls rule

coherence.

Simulator

This work is 

supported by 

NSF. 

Three rules must be followed.

Isolation: If requests share either destination

or source nodes then the first one has to be

scheduled and finished before the second.

Tetris: A request can start as early as

possible if the isolation rule is followed.

Wormhole: A request can cross existing

channels and fit into a hole as long as the

isolation rule is followed.

Isolation, Tetris, Wormhole Rules 

C
lo

c
k
 C

y
c
le

s

Cores

0

200

400

600

800

1000

1200

1400

1600

1 2 3

bad default good

A
v
e
ra

g
e
 W

a
it
 T

im
e

Configuration/Number of Loops (Separate)

Wait Time Reduction

avgWait

Loops

Graphical Visualization of a data file. On the left 

are the cores which core 0 is communicating 

with, with respect to time (clock cycles, on the x-

axis)


