
Adaptive Value Estimate Updates in Generalized Policy
Iteration Dynamic Programming for Reinforcement Learning

John Ahmed Dellas1, Joseph Anderson, PhD2

1Rutgers University-NB, 2Salisbury University

John Ahmed Dellas
Rutgers University-New Brunswick
jad525@scarletmail.Rutgers.edu
609-608-2057

Contact
1. F. Wang, H. Zhang and D. Liu, "Adaptive Dynamic Programming: An Introduction," in IEEE Computational Intelligence Magazine, vol. 4, no. 2, pp. 39-47, May 2009.
2. Sutton and Barto, “Reinforcement Learning: An Introduction”, 2nd Ed

References

Most modern “adaptive” methods of accelerating traditional dynamic programming policy iteration algorithms
rely on using a neural net to approximate the value function [1]. In this proposal, we instead focus on accelerating
DP by adaptively selecting the order in which state value estimates are updated using other reinforcement
learning algorithms so as to minimize convergence time.
More specifically, we tackle the classical DP-RL problem of finding the best policy iteration strategy by exploring
the use of a Monte Carlo Reinforcement Learner to accelerate the convergence of Dynamic Programming Policy
Iteration algorithm. The MC Learner is tasked with finding the optimal “sweep” through the state space during
policy evaluation. We analyze the shortcomings of using an MC method for this purpose as originally proposed
and present alternatives to extending the effectiveness of a crude proof-of-concept algorithm implemented and
tested on a classical DP-RL problem.

Abstract

1. Bellman equation for the state value function.

4. Left: Random policy after 1 iteration. Right: Optimal policy after convergence.

Introduction
Reinforcement Learning refers to a set of algorithms, techniques and methods used to train some agent
to accomplish a goal-driven task by having the agent maximize a reward that it receives by interacting
with its environment. This interaction is typically represented by 3 signals which pass between agent
and environment: state, action and reward. The state signal can be thought of as an indication of where
the agent is in the set of all possible arrangements of its environment (a state in a game of chess might
refer to an arrangement of the pieces on the board) that can be reached by performing some actions
(the second signal, passed from agent to environment). The agent accomplishes its task by following a
policy. A policy, denoted using the lowercase pi, is a mapping from the set of all actions (referred to as
the action space) to probabilities that the agent selects that action given that it is currently at a
particular state. More specifically, the goal of most RL algorithms to obtain the optimal policy
(optimality in general is denoted with a subscript “*”), which is the only policy that is deterministically
greedy with respect to its value function. There are two flavors of value functions: state value functions
(denoted with a “v”), and action value functions (denoted with a “q”). A state value function of a policy
gives the expected return by starting at a particular state and following the policy associated with it
thereafter (action value functions are identical except that instead we start at a state-action pair).
Return is defined as cumulative function of the rewards experienced after a time step t, and is typically
denoted Gt. The value functions of the optimal policy are called the optimal value functions, and are the
unique functions which satisfy the Bellman Optimality equations, which are just the Bellman equations
for the optimal policy (and can therefor be written in a special form without reference to any specific
policy). The Bellman equation for the state value function (1) gives the value of one state in terms of the
values of its successor states. Dynamic Programming, as applied to RL, refers to a collection of
algorithms used for solving RL problems when the dynamics of the environment are completely known.
The most popular DP-RL algorithm, policy iteration, is the focus of this research. Policy Iteration
(outlined in (2)) works by turning the Bellman equation into an update rule and exploiting the fact that
iterating value function estimates produced by the rule will converge to the true value function of a
given policy at infinity. Standard policy iteration has two main components: policy evaluation and policy
improvement. Policy evaluation is the calculation of the value function of a policy given as input. Policy
improvement is the creation of a new policy that is greedy with respect to the newly computed value
function to produce a better policy which can then be fed back into policy evaluation until the optimal
policy is produced. Policy comparison is defined as:

Note that the order in which state values are updated during policy iteration significantly influences the
rate of convergence of the algorithm [2]. Generalized policy iteration considers versions of policy
iteration in which state value updates are asynchronous and intermixed with policy improvements.

• Traditional implementation of DP-PI has arbitrary state space sweep.
• However, sweep selection can significantly influence convergence.
• The task of selecting sweeps through the state space during DP policy evaluation can

be modeled as a FMDP!
• States: States of the underlying MDP
• Actions: The decision of which state to evaluate next
• Rewards: The sum of the differences between the previous state value estimate and the

new state value estimate across estimates which have yet to fall beneath the threshold
• Discounting Rate: gamma = 1 (episodic)

• An episode in the task of finding the best sweep would be n policy evaluations before
episode termination.

Using a “supervising” reinforcement learning algorithm, we can intelligently select
which states we choose to update next, and reward update sweeps that maximize the
rate of convergence of the underlying DP algorithm. Originally, we intended to implement
this supervisor with a Monte Carlo Learning method. However, it became clear with time that a
MC method would be inappropriate, and was dropped in favor of a Temporal Difference
learning method based approach.

Performance Evaluation

Improvements and Conclusions

Approach

2. Right: A set of illustrations
of Generalized policy iteration

In action

3. Top: Standard Policy
Iteration
Right: Value Iteration,
an example of GPI. Used
in Jack’s Car Rental Prob.

.

• Memory Complexity is not sustainable for problems of any appreciable size
• Look into non-tabularized, approximation based methods for value function

representation, such as neural nets.
• DP sweeps are not an inherently episodic task

• MC methods are most appropriate for episodic tasks
• Needing to arbitrarily stop DP execution to perform the backwards computation required

for MC action value updates is both silly and slows the convergence of the algorithm
• Using an on-line learning algorithm such as TD Learning allows for experiential learning

with bootstrapping (no costly backwards return computations like in MC methods).
• Crude implementation for Jack’s Car Rental problem does not allow for experimentation with

multiple policy evaluation steps before a policy improvement
• Full implementation would require more complex reward signal
• Eventually, we will tackle more interesting RL problems

• Specifically problems with asymmetric action spaces

We rely on a classical DP problem known as Jack’s Car Rental problem to evaluate crude
adaptive sweep performance against traditional arbitrary sweeps.
• Max Number of Cars at each location: 5
• 10$ for rental, -1$ for transportation
• Max Number of cars transported overnight: 2
• Discounting Rate: 0.9
• Car transactions per day modeled by Poisson random variables (# of cars returned at

location 1: mean 3; # of cars rented at location 1 and returned at location 2: mean 1; # of
cars rented at location 2: mean 4)

