
Graph-Based Clustering for Anomaly Detection in Network Data

Nicholas Yuen , Dr. Enyue Lu
Kean University NJCSTM,

Salisbury University Department of Mathematics and Computer Science

Abstract Network Dataset

The need for network security has become more indispensable than ever with the

increasing amounts of transmitted data. To monitor the network data, Network

Intrusion Detection Systems have been implemented to detect anomalous behavior

during those transmissions. These unsupervised machine learning techniques can

help accurately and quickly provide alerts when such behavior is detected. This

approach is necessary with the constant evolution of anomalies attempting to avoid

systems that cannot adapt to these new varieties of intrusions. With the rising

numbers of network attacks, Network Intrusion Detections Systems will be more

important to notice those subtle nuances in the network behavior.

Although certain clustering algorithms have been developed and improved

throughout time, there has been little focus as to how to parallelize the process to

even further improve the detection speed. With faster detection speeds, action can be

taken much sooner to prevent possible attacks from outside entities. Even though

accuracy is an important measure of how well an algorithm performs, speed is also

essential to this study because the ultimate goal is to develop a detection system to

be implemented for real time use. To replicate that flow of data in this study, the 1999

KDD Cup Dataset, the most widely used dataset for network intrusion detection, was

read from a text file instead of coming from some network directly. To maximize the

quickness of anomaly detection in the data, Hadoop MapReduce was used to

parallelize the process for faster computations.

Introduction

References

Barycentric Clustering

[1] A. Bustamam, K. Burrage, and N. A. Hamilton, "Fast parallel Markov clustering in

bioinformatics using massively parallel computing on GPU with CUDA and

ELLPACK-R sparse format," IEEE/ACM Transactions on Computational Biology and

Bioinformatics (TCBB), vol. 9, no. 3, pp. 679-692, 2012.

[2] J. Cohen, "Barycentric graph clustering," Oregon Health Science University,

2008.

[3] S. Deng and W. J. I. Wu, "Efficient Matrix Multiplication in Hadoop," vol. 13, no. 1,

pp. 93-104, 2016.

[4] B. Joyce, E. Lu, and M. K. Gobbert, "Graph Based Anomaly Detection using

MapReduce on Network Records," ed, 2017.

[5] M. Kadhum, M. H. Qasem, A. Sleit, and A. Sharieh, "Efficient MapReduce matrix

multiplication with optimized mapper set," in Computer Science On-line

Conference, 2017, pp. 186-196: Springer.

[6] C. McNeill, E. Lu, and M. Gobbert, "Distributed Graph-Based Clustering for

Network Intrusion Detection," in Extended Abstract, Companion of SC: IEEE/ACM

International Conference for High Performance Computing, Networking, Storage

and Analysis (SuperComputing), 2016.

[7] C. C. Noble and D. J. Cook, "Graph-based anomaly detection," in Proceedings of

the ninth ACM SIGKDD international conference on Knowledge discovery and data

mining, 2003, pp. 631-636: ACM.

[8] J. Norstad, "A mapreduce algorithm for matrix multiplication," ed, 2009.

[9] Kdd.ics.uci.edu. (1999). KDD-CUP-99 Task Description.

http://kdd.ic.uci.edu/databases/kddcup99/task.html.

[10] Zhang, A. (n.d). Markov Cluster Algorithm.

Unlike the Barycentric Clustering Algorithm, Markov Clustering uses a network flow

approach. Each node is given some flow to start with. After each iteration, a

percentage of flow from each node travels to each of its neighbors based on

weighted probability that the flow will travel from one vertex to another. These

interactions are represented as Markov Matrices and over time become idempotent.

If the matrix is idempotent at the end of an iteration, then the matrix has converged

and clustering can stop. An image is included below to visually represent the

algorithm.

Currently, large amounts of data are transported over networks and require protection

from breaches in security. Thus, Network Intrusion Detection Systems help to quickly

alert the necessary personnel when the time comes. Because network data show the

connections among multiple sources of interaction around the world, graphs are used

to represent those connections. Since network data can be represented as graphs,

clustering operations can be performed to detect anomalies. With multiple clustering

algorithms to choose from, each one can be implemented, tested, and compared for

efficiency and accuracy. Clustering algorithms are the most important component for

anomaly detectionrk data, and as a result should be intensely examined. This study

focused on an overview of the comparison between the Barycentric Clustering

Algorithm and the Markov Clustering Algorithm (MCL). In addition, an investigation of

possible improvements and approaches to the implementation of MCL was conducted.

1

1 2

2

Hadoop MapReduce

For this project, the Hadoop MapReduce framework was used to help with parallelizing

the overall process of clustering the network data. This framework works well with

processing large data sets in a distributed way. Normally a user would need to manage

every aspect of parallelization, but MapReduce is unique in the way it handles all those

background operations with the help of a handful of helpful commands. As the name

suggests, MapReduce has two primary functions: Map and Reduce. MapReduce works

with data sets by converting it into the format of <Key, Value> whenever reading input

or emitting pairs as output records. The Map function reads in some entries from input

and creates an intermediate data set which is then shuffled before the Reduce function

to group the similar entries. Then the Reducer function takes that shuffled intermediate

data, compacts the similar entries into a single entry, then outputs the collection of

compacted entries which could possibly serve as the input for another MapReduce

process. Although MapReduce allows for easier parallelized implementation of code, it

consequently has some overhead with every Map and Reduce function.

All experiments carried out throughout the program used the 1999 KDD Cup

Dataset for computational tasks and analysis. This is because the 1999 KDD Cup

Dataset has been the standard for network data experiments by scientists in this

field of study. Each record in the dataset has 41 unique features that are either

continuous or discrete. Some of those features are protocol_type (type of protocol),

src_bytes (number of bytes going from the source to the destination), and

srv_diff_host_rate (percentage of connections to different hosts) [9]. The

combination of discrete and continuous features in addition to the scale of the data

poses a challenge to the clustering operation to handle both types of values in

each network record.

The Barycentric Clustering Algorithm is influenced by Hooke’s Law which is based

on physical spring behavior. Hooke’s Law states that there is a linear

proportionality between some force needed to compress or extend a spring and

that resulting distance the spring will compress or extend. Barycentric Clustering

considers that concept and provides some additions to Hooke’s Law to be

performed on undirected graphs. Firstly, all the edges connecting the vertices of

the graph are imagined to be springs. By doing so, the locations of all the vertices

can be randomized and then released to see where they move after each iteration

based on the forces they experience from their neighbors. Once each trial is done,

the length between each vertex is measured and recorded before another trial is

started. After all the runs are completed, the average length for each edge is

calculated. Those average edge lengths are then compared to one another and

contribute to a score for each edge. Edges with high scores are deemed inter-

cluster edges and are then erased. After all the inter-cluster edges are deleted, only

the clusters will remain and the process will terminate [2].

Markov Clustering

Matrix Multiplication

In Hadoop
With demand for constant improvements for speed and memory management,

Kadhum et al. [5] proposed a relatively new approach to matrix multiplication in

addition to prior work done by Deng & Wu [3] to reduce the amount of MapReduce

jobs down from two to one. Instead of following the traditional format of having the

first job process the data and the second one do all of the computational tasks, the

authors proposed that a preprocessing step replace the first MapReduce job to

reduce the overall amount of data and I/O processing overhead. In addition, they

also observed from previous work that element-by-element matrix multiplication was

not efficient and took a considerable amount of time and in response proposed that

an element-by-block scheme be implemented instead to reduce the amount of

necessary mappers. Using this scheme, Kadhum et al. proposed that with the single

MapReduce job, the Map task would read the preprocessed data from a file and

conduct the matrix multiplication and the Reduce task would aggregate all of the

computations into a resulting matrix.

Matrix Multiplication

In CUDA
An implementation of MCL uses CUDA where kernels are used in parallel to execute

the required tasks. Bustamam et al. [1] proposed that a kernel be designated to each

computational task within MCL. One kernel would be responsible for executing the

expansion step, another for the inflation step, and the final one to compute the

chaos value for the system to determine whether the clustering is done. Before, it

was mentioned that clustering was completed if the resulting matrix was

idempotent. However, Bustamam et al. calculated a global chaos value by

aggregating the chaos values of the columns to support the theory that an

idempotent matrix would describe the completion of the clustering operation. Chaos

values were calculated by using the equations below.

Bustamam et al. then tested their CUDA-MCL implementation on a dataset of

protein-protein interactions represented as a graph where each protein is a vertex

and the interaction between two proteins is the edge connecting the vertices. They

first conducted preliminary tests to determine whether global or shared memory

and the number of threads per block (TPB) in each kernel would be the most

efficient to maximize the speedup between GPU and CPU computation. By using

the 128 core GPU SC-9800GTX machine, the authors showed that a 300x speedup

was obtained by using 256 TPB in shared memory. The results of all combinations

of memory kernels and TPB are shown in Graph 3 below.

To analyze how well the clustering algorithm performed, there is a need for some

metrics to be calculated. Commonly, records are classified as either normal or

intrusive after the clustering process has been completed. However, since

clustering is an unsupervised method, there are bound to be both correctly and

incorrectly classified records whether they be either normal or intrusive. This

gives rise to labeling each of them as true positives (TP), true negatives (TN), false

positives (FP), and false negatives (FN) [4]. True says that a record was correctly

classified while false says it was incorrectly identified. In combination with either

true or false, positive determines a record to be an intrusion and negative

classifies a record as normal. There are many metrics mentioned in [4] which

could be used to examine the performance based on the various classification of

records, but the one which mostly matters is the accuracy calculated with the use

of equation 3 below

Measuring Performance

𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 =
𝑻𝑷 + 𝑻𝑵

𝑻𝑷 + 𝑻𝑵 + 𝑭𝑷 + 𝑭𝑵

Conclusion

For the entirety of the program, an investigation of the comparison between

Barycentric Clustering and was thoroughly conducted through the consultation of

many articles. Because the Barycentric Clustering Algorithm had already been

implemented and tested by previous REU attendees, the focus then turned on

what the Markov Clustering Algorithm offered. However , by the time all

preparations were made, the program reached a stage when there was not going

to be enough time implement and test any changes. Therefore the attention shifted

towards theoretical thought of possible future approaches which may yield a

better accuracy than that from Barycentric Clustering. One of those ideas was to

replace the first MapReduce cycle with a preprocessing step to reduce the overall

overhead. This showed a significant speedup with sparse graphs of varying

dimensions and shows promise of a possible approach for dense matrices like

those used in the Markov Clustering Algorithm. Another way to minimize overhead

would be to use CUDA to implement the Markov Clustering Algorithm. Because

CUDA uses the memory within the GPU to do computations, there is less latency

overall. By suggesting some ways to reduce the run time for a possible clustering

algorithm which is more accurate, it is safe to conclude that implementing MCL on

CUDA would be the most efficient algorithm for speed and accuracy over

Barycentric Clustering.

Acknowledgements

This work is funded by the National Science Foundation under the Research

Experience for Undergraduate Students by the CCF-1757017 grant.

