
A Study on Parallel Machine Learning, Supervised Learning, and Reinforcement Learning
Christopher Arausa, Joe Anderson

Abstract

The goal of neural networks is typically to 
model some complex or unknown function. This 
is done by continuously reducing the error 
across a dataset, or sometimes by rewarding 
good behavior. However this is typically a very 
timely process when you begin to model very 
large datasets or complex functions. A common 
solution is to parallelize the training of the data 
across a cluster of networks. The big issue with 
most parallel learning techniques is the large 
communication bottleneck since most 
algorithms communicate after every batch. In 
this project I applied a naive parameter 
averaging approach at the end of training to see 
whether we can avoid communicating 
completely until the end.  

Method

The neural networks were coded using 
tensorflow’s graph. One single-model trained on 
all of the training data was maintained, and the 
rest of the sub-models had their training data 
partitioned. The partitioning of training data was 
done randomly in hopes to avoid any sort of 
over-specialization or falling too deep into a 
local minima. Validation data remained the 
same across all models. 

Abstract

The goal of this project was to train a neural 
network to play a game without explicitly coding 
the rules. Then to subsequently train the same 
model to improve using reinforcement learning 
to determine if there is a noticable difference in 
training time required between pure 
reinforcement learning and the combination of 
reinforcement learning and supervised learning.

Method

The neural network was coded using 
tensorflow’s graph. The network was set up as 
a classification problem with a 1x18 input space 
for the locations of X&Os on the board and a 
1x9 output space for the move it wants to make 
given the position. The move selected was the 
max value move in the output vector. The 
training data was collected from the full 
database of possible tic tac toe games.

Results

When networks of node count 4,10, and 32 
were initialized on the same weights and 
biases and trained on randomly partitioned 
training data, the accuracy of the 
recombination model stayed within 2-3% of 
the single-model trained on all of the data.  

Results

By training a neural network on the database of 
all possible tic tac toe games, there was a 45% 
win-rate achieved versus a randomized engine. 
However the move-vectors that are generated 
are always valid moves. So the network 
understands the rules, but isn’t very good at 
using them.

Notice the prediction vectors are near 0 for invalid moves.

Future Works

Apply reinforcement learning to a model already 
trained with supervised learning to see whether 
it’s faster or worthwhile to teach a neural 
network the rules of the game first. Train a 
network off of solely the best moves, instead of 
the entire database. 


	Slide 1

