
GPU Accelerated Graph-Based Anomaly Detection
Ian James Thomas, Dr. Enyue (Annie) Lu, Salisbury University

Anomaly detection plays an important role in network
intrusion detection systems, as anomalous network
data could indicate some type of attack.
Interconnected network data can be accurately
represented as graphs, a structure which contains a
set of vertices and edges. This research explores
methods for implementing the SUBDUE graph
compression algorithm using NVIDIA CUDA, in order
to identify common occurrences in a network data
set.

Previous research into this approach to graph-based
anomaly detection was performed by Brandon Joyce
of the University of North Carolina during the 2016
REU, in which a MapReduce approach was
implemented. The MapReduce implementation of
the SUBUDE algorithm resulted in a 99.21%
sensitivity rate (attacks correctly identified) and
94.65% accuracy rate (identifying attack type). Due
to overhead associated with distributed computation
used in MapReduce, the run time for the algorithm
was poor. The goal of this project is to utilize the
massive parallelism of GPU programming in order to
increase performance improvements over Joyce’s
MapReduce implementation.

NVIDIA CUDA is a parallel computation platform
developed by NVIDIA corporation. It allows for CUDA
enabled graphics processing units (GPUs) to be utilized
for general purpose processing. CUDA enabled GPUs use
many parallel processors grouped into streaming
multiprocessors which are capable of running concurrent
thread blocks. This allows for massive use of
parallelization to handle large amounts of data.

The following are results from Joyce’s
MapReduce implementation of the
SUBDUE algorithm, and results from
the pairing and compression phase
from our CUDA implementation.
Joyce’s algorithms were only run once
on a 16-node cluster at University of
Maryland, Baltimore County’s High
Performance Computing Facility. The
results from our CUDA algorithm were
run on one machine

System Specification for CUDA
implementation (one machine):

CPU: Intel Xeon E5-2650 v4 @
2.20GHz
GPU: NVIDIA Quadro M2000
(NVIDIA Maxwell Architecture)

Hardware specifications for 16-node
cluster running MapReduce algorithm
were not listed

of records
processed

Hadoop MapReduce NVIDIA CUDA
(device code only)

NVIDIA CUDA
(device + host)

50 records 1,244.25 seconds .001043 seconds .0107 seconds

2550 records Not Tested .00707 seconds .4139 seconds

5100 records Not Tested .0341 seconds .7676 seconds

45,214 records 2,011.65 seconds .3845 seconds 6.574 seconds

667,370 records 7,927.97 seconds 15.425 seconds 73.142 seconds

1,001,289 records 8,365.27 seconds 26.301 seconds 107.109 seconds

To model network data, a star-graph
model is applied. The star-graph model
is a way to represent individual network
records as a ‘hub’ vertex, and different
attributes of that network record are
attached as vertices to the hub.
Common patterns in multiple network
records are found, then compressed.

In the SUBDUE graph compression algorithm, common
patterns of a graph are found and compressed. This is done
by replacing entire subgraphs that occur multiple times with a
single node. Typically, graph compression algorithms are
used for data compression. While this is useful in our case,
as the amount of records we will be processing are massive,
it is more useful for tracing how many times a subgraph
appears in a data set.

A ranking system has yet to be implemented, which would conclude the
implementation. This ranking system would consider the number of
properties compressed in comparison to how many times that property
appears in the record to determine the likelihood of the record being
anomalous. This will most likely be easy to implement, and (theoretically)
does not affect the performance of the algorithm, as it would run O(r) where r
is the number of records, while the compression phase of the algorithm runs
O((P*R)^2), which is the most intensive phase of the algorithm. The following
equation was used in the original MapReduce implementation, where n is
the number of iterations, i is the current iteration, and c, is the percent of the
record that was compressed

Our results indicate a significant performance improvement when processing the records on the GPU rather
than distributed over a cluster. Once the ranking system is complete testing will be done to confirm the same
accuracy as the original MapReduce implementation, and testing on other data sets will be done. Future work
could include comparing the results to different clustering methods explored in other research.

The KDD CUP-1999 data set is used in testing, and is the data used for the
performance benchmark. The data set is comprised of 5,000,000 records, each
containing 41 properties. The data set is nine weeks of simulated air force network
traffic. Records are listed as either normal, or some attack type is given

Hub Hub

Common pattern

