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ABSTRACT

CHANGE DETECTION METHODOLOGY

We present research to detect flooding changes in NASA’s Uninhabited Aerial
Vehicle Synthetic Aperture Radar (UAVSAR) imagery using deep learning, and to
classify the land cover types atfected by these floods. First, a binary change
detection model is used to identify flooded areas by comparing pre-event optical
data and post-event UAVSAR data. Next, the regions are classified by land cover
category to determine what types of terrain experienced the most inundation. The
outcome is an integrated flood mapping and land cover analysis tool, which is
important for decisions regarding where priority disaster response is dispatched
and for land use analysis. This tool provides timely flood extent maps regardless
of weather or daylight conditions and helps to understand which land covers and
communities are impacted by flooding to aid in recovery etforts, where to develop
preventative infrastructure, and future urban planning. The work builds on
state-of-the-art deep learning methods for image segmentation and leverage
geospatial data platforms to etficiently handle large remote sensing datasets. We
train and test the models on UAVSAR data, and the models achieve 90.0%, pixel
accuracy for change detection and 86.1% pixel accuracy for land cover
classification. The code can be found at:
https://github.com/kevintang6142/flood-detection.

The first component of our framework is a flood change detection model defined
by a double-neural-network structure. It has an image transfer network, a cycle
generative adversarial network (cycleGAN) that translates an optical image into an
SAR image. It consists of an encoder-decoder architecture with nine residual
blocks for the generators. The discriminator follows a pathGAN design which
classifies local sections of the image as real or fake. The loss function we used for
the generator is a summation of adversarial, identity, and cycle loss calculated for
every backwards pass. This model was trained using a batch size of one and a
learning rate of 0.0005 for 200 epochs. This step allows us to input a pre and
post-flood pair of SAR images into the model, Global-Local Change Detection with
Diversified Attention (GLCD-DA) [6]. The GLCD-DA change detection network
uses the Siamese ResNet18 as a backbone with three modules: an edge injected
fusion module to preserve spatial details, a global-local interaction module that
captures long and short range dependencies, and a feature fusion module that
creates the final change probability map. The dataset is augmented using vertical
and horizontal flips. We trained this model with various batch sizes, learning rates,
gamma rates, optimizers, and loss functions to find optimal hyperparameters.

FRAMEWORK OVERVIEW

CHANGE DETECTION RESULTS

Using GAN generated SAR images and post-flood SAR images, we trained the
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Figure: Overview of data pipeline and model structure for combined change detection and land cover classification.

GLCD-DA change detection model. We found that the optimal parameters were a
batch size of 16, an Adam optimizer, a learning rate of 0.001, a gamma value of 99,
70 decay iterations, and a cross-entropy loss function. We selected the best model
based on the intersection over union score. This model achieved a pixel accuracy
of 90.0% and a mean Dice coefficient of 0.771. The recall score for non-tflooded
areas was 93.7%, and the recall score with respect to flooded areas was 76.7%. The
differing recall scores show us that the model predicts the non-flooded regions
with more accuracy than it predicts flooded regions, likely due to a class
imbalance. The figure shows an example of original optical and SAR inputs, the
output of the image transfer network (GAN generated SAR), the predicted flood
mask, and the ground truth.
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We used the National Agriculture Imagery Program (NAIP) dataset, filtering for
cloud-free imagery from before Hurricane Florence in 2017, as our source of
pre-flood high-resolution optical images [1]. Leveraging synthetic aperture radar
imaging’s ability to penetrate clouds and operate day and night, we obtained Pauli
decomposed L-band SAR data from NASA JPL’s airborne UAVSAR image
platform, specifically from flight lines recorded in the days immediately following
Hurricane Florence’s flooding [2]. We applied an Enhanced Lee filter, which
reduces speckle noise [3]. We use a high-resolution flood extent dataset for
Hurricane Florence from NC OneMap [4] as the ground truth target for our change
detection model and the ESRI 10 m Land Cover Dataset-filtered for data from the
year 2017-as the ground truth for land cover (pre-tflood) [5]. We created consistent
sized tiles with 20 meter resolution over all four datasets, converted from a
GeoTIFF format to PNG, and discarded tiles that consisted entirely of no-data
values.

Figure: Example inputs, GAN generated image, prediction, and ground truth for GLCD-DA change detection model.
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Figure: Land Cover Classes and Colors

LAND COVER CLASSIFICATION METHODOLOGY

The second component of our framework is a semantic segmentation model which
assigns each pixel of post-flood SAR images to one of seven land cover class labels
corresponding to the land cover pre- flood. For this, we utilize encoder-decoder
models. Their encoders compress the input images into lower resolutions through
downsampling,extracting high level features from the images. Then, their
decoders increase the resolution of the images and merge this with the feature
information extracted previously. We trained for a maximum of 100 epochs and
monitored the validation loss each epoch. If validation loss did not improve for 10
consecutive epochs, training was stopped and the model from the epoch with best
validation loss was saved for evaluation. The data is augmented with vertical and
horizontal flips as well as rotations. We evaluated a variety of
segmentation-specific loss functions on these widely used image segmentation
architectures: U-Net, U-Net++, MANet, LinkNet, FPN, PSPNet, PAN,
DeepLabV3+, UPerNet, and Segformer [7].

LAND COVER CLASSIFICATION RESULTS

We trained the 10 segmentation models men-
tioned above with six loss functions. We
selected the Segformer architecture with a
Jaccard loss function as the best model be-
cause it achieves the highest mean intersec-
tion over union (IoU) score. This model
achieved 86.1% pixel accuracy, 0.576 mean
IoU, and 0.696 mean Dice coefficient. The
model predicts the Water, Trees, Crops, and
Built Area classes the most, while it struggles
to identify Flooded Vegetation, Bare Ground,
and Rangeland. Some example predictions
are included in the figure.
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Figure: Example SAR inputs, Segformer predictions,
and ground truth for land cover classification.

CONCLUSION

Overall, our application achieves 90.0% pixel accuracy for identitying newly
flooded areas and 86.1% pixel accuracy for predicting land cover type. The dataset
that we trained our models on contained very little of the Snow/Ice and Clouds
land cover classes. To correctly predict these classes in the future, we would need a
more extensive and diverse dataset to retrain the model. Future work also includes
adding more functionality to our flooded land cover prediction application, like
analyzing particular parts of the image.
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