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Abstract

Falls are the leading cause of injury among older adults in the United States, causing 950,000 hospitaliza-

tions and 32,000 deaths in 2018 [1]. Automatically detecting walking surfaces can play a crucial role in fall

prevention, enabling individuals to adjust their gait and safely navigate potentially hazardous terrain. For in-

tegration in wearable devices, the walking surface detection system must be accurate, efficient, and suitable

for resource-constrained hardware.

To that end, we present a deep learning-based approach for walking surface detection, prioritizing classi-

fication accuracy while also considering real-time performance and deployment constraints. Our method

introduces two core contributions. First, we present an effective strategy for sensor data augmentation

and preprocessing. Second, we design an efficient convolutional neural network (CNN) architecture that

achieves high accuracy with low computational overhead. Experimental results demonstrate that our ap-

proach reaches 91.5% accuracy in classifying five common walking surfaces using data from a single step.

Walking Dataset and Preprocessing

This work uses the dataset established in [4]. To collect the dataset, an IMU sensor was deployed near

the right ankle to collect accelerometer and gyroscope sensor readings while participants walked on five

common walking surfaces in daily life, as shown in Fig. 1.

Figure 1. Sensor location and five walking surfaces [4].

To eliminate the impact of device orientation on classification results, we compose three-axis accelerometer

readings at each timestamp into a scalar value as in equation (1), where ax, ay, az represent accelerometer

readings of x, y, and z axes, respectively. We similarly compose gyroscope readings.
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We use a method similar to [5] to extract data samples for training and testing our CNN model. We first

normalize the composed acceleration time series using z-score scaling. We then detect acceleration peaks

representing heel-strikes, restricting detected peaks to values at least two standard deviations above the

sample mean, as shown in Fig. 2. We extract windows of 0.5 seconds (50 data points) centered around

these peaks, each containing two-channel readings from one footstep.

Figure 2. Detecting acceleration peaks from one walking sample. Figure 3. A 50x4 matrix after data augmentation.

We construct segments from normalized data, reducing variation between channels and segments and im-

proving model performance. We also duplicate and stack each 50x2 sequence to obtain a 50x4 matrix (e.g.

Fig. 3). Each matrix is paired with its corresponding walking surface label to form a classification sample; all

such samples together constitute the dataset used for training and testing CNN models.

CNNArchitecture

Our goal is to design a new deep learning architecture that can achieve a strong balance between accuracy

and computational efficiency for walking surface detection. As seen in Fig.4, our model has three convolu-

tional blocks. Each convolution block contains a convolution layer, a batch normalization layer, and a leaky

ReLU activation layer. Successive convolutional blocks have double the number of filters to increase model

depth. In the final convolutional block, we include a maximum pooling layer to reduce the data sample di-

mension. Between each convolutional block, we add residual blocks with skip connections [2].

Figure 4. Proposed CNN architecture for walking surface classification

For each convolutional layer, we use 3x3 kernel dimensions to maintain a reasonable balance between com-

putational cost and spatial feature extraction. We include batch normalization layers, leaky ReLU activation

layers, and a dropout layer to improve model convergence and encourage intrinsic learning.

Additionally, we incorporate distributed residual blocks in our CNN architecture to help maintain gradient

flow during backpropagation and allow deeper portions of our model to remember low-level features of the

training data. Each residual block follows the structure described in the original residual learning paper [2].

Experimental Results: Data Augmentations

Fig. 5 displays the impact of several data augmentation approaches on our model’s classification accuracy.

Normalization greatly improves our model’s accuracy for 50x2, 50x4, and 50x6 segments. Although stacking

reduces accuracy when using raw data, our proposed strategy of stacking to 50x4 with normalized data

achieves the highest accuracy, improving performance by about 7.5% over results with raw 50x2 segments.

Figure 5. Our model accuracy with five different data augmentation approaches. The plots show the variation in accuracy

between users, and our suggested strategy is shaded green.

Experimental Results: Model Performance

The following results were obtained using 50x4 normalized data samples. Fig. 6(a) shows the comparison

of Personalized Model accuracy for our model and traditional machine learning classifiers [4]. Our model

improves surface classification accuracy by 10% compared to MLP, the highest performing machine learning

classifier.

Figure 6. Performance comparison between traditional machine learning classifiers and existing CNN [4]

Fig. 6(b) shows the comparison of Personalized and Generalized Model accuracy for our model and AlexNet

[3]. Our model outperforms AlexNet by 8.26% and 6.67% for the Personalized Model and Generalized

Model, respectively. Wewere also able to decrease the number of trainable parameters in our CNN architec-

ture by a factor of 19 compared toAlexNet, as shown in Figure 6(c). By incorporating residual blocks to create

a deeper architecture, using the leaky ReLU activation function, reducing the size of the fully-connected lay-

ers to reduce the number of learnable parameters, and utilizing a dropout layer to avoid overfitting, we were

able to design a model architecture specifically catered to our surface classification application.

Conclusion and FutureWork

Our novel CNN architecture coupledwith our proposed data preprocessing techniques is more efficient than

existing CNN architectures and provides high performance surface classification. By introducing sample

normalization and channel stacking for 2D convolutions, selecting appropriate parameters, incorporating

residual blocks for skip connections, and using the LeakyReLU activation function in our model design, we

achieve a 91.5% accuracy for distinguishing five common walking surfaces in daily life, using data from a

single footstep.

We plan to collect a more comprehensive dataset to account for varying walking characteristics in model

training (different shoe types, pace, etc.). Currently, we have not measured our model accuracy when it is

tested on a user who is not included in the training dataset. We will extend our work to utilize transfer

learning for cross-domain adaptation analysis. Finally, we will develop a deep learning model to classify

surface type from irregular walking patterns with a Long-Short Term Memory (LSTM) architecture.
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