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Background.
In continual learning, data is given to the model in a series of tasks.
Because task distribution changes over time, models trained on
new tasks tend to have high losses when retested on old tasks, also
known as catastrophic forgetting. With real-world data, task iden-
tity is often not known at training time, and many current models
require it to be known. Mixed Stochastic Gradient (MEGA) and
Task-Agnostic Averaged Gradient Episodic Memory (TA-A-GEM)
are algorithms that use episodic memory to counteract catastrophic
forgetting in continual learning.

ProposedModel.
STRATA (Stochastic Gradient with Task-Agnosticity) is based

on the TA-A-GEM and MEGA models mentioned. We improve the
clustering memory by removing the sample that is furthest from
the mean. Combining our improved clustering-based memory
task-agnostic extensions on the MEGA-I and MEGA-II algorithms
provides improved performance for domain-incremental online
learning.

Neither the episodic memory handlers nor the model itself are
given access to any task labels.

For each training iteration, STRATA recomputes reference gra-
dients to control the model’s parameters in relation to the current
batch and random samples from the model’s episodic memory.
First, the model’s loss on the incoming batch is computed and back-
propagated to obtain the flat gradient vector. If memory samples
exist, we stack up past examples and obtain both the reference loss
and reference gradient without affecting the optimizer state. After
this, like MEGA-I, STRATA-I balances the current and reference
gradients through a loss-based weighted sum. Similarly, follow-
ing MEGA-II, STRATA-II rotates the flat gradient vector toward
the reference gradient vector using a loss-based ratio calculation.

Experiments.
We used the MNIST, Fashion MNIST, and CIFAR-10 datasets to

evaluate our model. Our task types were permutations, rotations,
and class-split. We used two frameworks of task introduction:
sequential and continual. Regardless of framework, each task was
training over 20 epochs with a random sample order every epoch.

We used three different baselines to test our models: TA-A-
GEM and BGD as previous state-of-the-art models for this task, and
randomly adding and removing from clusters in episodic memory
with TA-A-GEM.

Results.

Class Split Permutation Rotation

Random 0.8068 0.7537 0.6027

TA-A-GEM 0.8412 0.7805 0.6162

BGD 0.7684 0.8609 0.6973

STRATA-I 0.9260 0.7953 0.7008

STRATA-II 0.9222 0.7923 0.6913

Table 1. Average overall accuracy for sequential task introduction, MNIST. The best
result in each column, plus any result within 99% confidence of the best result, is written in
bold.

Class Split Permutation Rotation

Random 0.41350 0.16803 0.46465

TA-A-GEM 0.35401 0.06275 0.44032

BGD 0.54056 0.17244 0.47983

STRATA-I 0.05917 0.06541 0.33136

STRATA-II 0.06718 0.06169 0.33670

Table 2. First-task forgetting for sequential task introduction, MNIST. The best result in
each column, plus any result within 99% confidence of the best result, is written in bold.

Left: Average accu-
racy of each of the
5 models. MNIST,
class-split task, se-
quential. Averaged
over all epochs, then
over 5 runs. Shaded
area shows 1 standard
deviation.

Right: First-task for-
getting of each of the
5 models. MNIST,
class-split task, se-
quential. Averaged
over all epochs, then
over 5 runs. Shaded
area shows 1 standard
deviation.

Discussion.
STRATA-I has statistically significant improvements on class

split tasks across all datasets. Not only does STRATA achieve
incredibly high task-agnostic accuracies on MNIST and Fash-
ion MNIST datasets (clearing 92% accuracy on both sequen-
tial and continual task introduction frameworks), we also see
roughly 16, 14, and 2.5 percentage point increases in accuracy on
datasets MNIST, Fashion MNIST, and CIFAR-10, respectively, on
sequentially-introduced class-split tasks when compared to BGD.
STRATA retains its superior performance on continual tasks, with
roughly 8.5, 9.5, and 2 percentage point increases in accuracy on
datasets MNIST, Fashion MNIST, and CIFAR-10, respectively, on
continual task introduction, when compared to BGD.

Both graphs shown to the left exemplify STRATA’s superior
performance over all three baseline models. Both STRATA models
have significantly higher accuracy and lower forgetting than any
of the three baseline models.

BGD consistently outperforms STRATA-I and -II on MNIST
permutation tasks, but STRATA-I’s overall accuracy is higher than
TA-A-GEM’s with 99% confidence. STRATA-II outperforms TA-
A-GEM’s average accuracy in a continual task introduction envi-
ronment with 99% confidence for continual introduction, and with
98% confidence for sequential introduction.

With the exception of permutation tasks on the CIFAR-10
dataset, STRATA performs statistically indistinguishably from
baseline or significantly better on first-task accuracy. This, com-
bined with its superior performance on overall accuracy, suggests
that STRATA has successfully walked the line between flexibility
for newer tasks and retention of early tasks.
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