

GPU Implementation and Parallel Optimization for

Electromagnetic Imaging
Mostafa Awwad (Undergraduate), Yuanwei Jin (Faculty Mentor), Enyue Lu (Faculty Mentor)

Dept. of Math. & Computer Science, Salisbury University, Salisbury, USA

 As the developers of the time reversal adaptive interference

canceler (TRAIC) time reversal beamformer (TRBF), created a new

algorithm to detect and locate targets in rich scattering environments.

It utilizes time reversal in two stages: 1) Anti-focusing: TRAIC

time reverses and then reshapes the clutter backscatter to mitigate

the clutter response. 2) Focusing: TRBF time reverses the residual

backscatter to focus the radar image on the target. Laboratory

experiments with electromagnetic radar data in a highly cluttered

environment confirm the superiority of TRAIC-TRBF over conventional

direct subtraction (DS) beamform imaging. Searching for the optimum

speed to implement this algorithm on Matlab, we implemented the

algorithm utilizing a multi core and a GPU within the Matlab environment.

Then we created kernel function in C++ and called them from Matlab code.

While comparing the results we obtained interesting conclusions.

1

2

7

9

10 11

14

15

16

18

26

27

28

33

36

40

44

X

range [cm]

c
ro

s
s
 r

a
n

g
e

 [
c
m

]

Direct Subtraction Wideband Beamforming [dB]

o

200 220 240 260 280 300 320 340

-60

-40

-20

0

20

40

-40

-35

-30

-25

-20

-15

-10

-5

0

1

2

7

9

10 11

14

15

16

18

26

27

28

33

36

40

44

X

range [cm]

c
ro

s
s
 r

a
n

g
e

 [
c
m

]

TRAIC + TR Wideband Beamforming [dB]

o

200 220 240 260 280 300 320 340

-60

-40

-20

0

20

40

-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Results using Hankel Approximation In the Paper

1

2

7

9

10 11

14

15

16

18

26

27

28

33

36

40

44

X

range [cm]

c
ro

s
s
 r

a
n

g
e

 [
c
m

]

Direct Subtraction Wideband Beamforming [dB]

o

200 220 240 260 280 300 320 340

-60

-40

-20

0

20

40

-30

-25

-20

-15

-10

-5

0

1

2

7

9

10 11

14

15

16

18

26

27

28

33

36

40

44

X

range [cm]

c
ro

s
s
 r

a
n

g
e

 [
c
m

]

TRAIC + TR Wideband Beamforming [dB]

o

200 220 240 260 280 300 320 340

-60

-40

-20

0

20

40

-60

-50

-40

-30

-20

-10

0

1

2

7

9

10 11

14

15

16

18

26

27

28

33

36

40

44

X

range [cm]

c
ro

s
s
 r

a
n

g
e

 [
c
m

]

TRAIC + TR Wideband Beamforming [dB]

o

200 220 240 260 280 300 320 340

-60

-40

-20

0

20

40

-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

1

2

7

9

10 11

14

15

16

18

26

27

28

33

36

40

44

X

range [cm]

c
ro

s
s
 r

a
n

g
e

 [
c
m

]

Direct Subtraction Wideband Beamforming [dB]

o

200 220 240 260 280 300 320 340

-60

-40

-20

0

20

40

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Results using Hankel Approximation in
Balanis Book

Results using Besselh

1 2
0

10

20

30

40

50

60

70

80

E
xe

cu
ti
o
n

 T
im

e

 Hankel Function Approximate Method

 Greens Function Calculation Method

CPU

Multi-Core (4)

GPU 5010M

Processor Type Time using Hankel

function (Besselh) [s]

Time using Hankel

Approximation

instead of Besselh [s]

CPU - Single 70.501 9.964

CPU – MultiCore (4) 29.31 6.89

GPU – M5010 (348) 31.86 7.95

- The MultiCore (4 cores) calculations is faster than the single

CPU as expected and also faster than GPU for this example.

- With more than 4 cores, the speed up factor would be higher

- With the Hankel function approximation, the multicore

processing is the fastest

- The time needed for the transfer of data between the system

memory and the GPU memory is the determining factor for

GPU speed in this simple test case.

- For much more computationally intensive cases, for example

with more frequency points, it is expected that the GPU time to

be less than the Multi-Core time.

- Because the results based on the approximation of Hankel

function are not in match with the original results, It is

recommended to use the Multi-Core or the GPU without

Hankel function approximation. This is showing a minimum

speed up factor of 2.

Finding an optimum procedure for speeding up the simulation

time for sample case (Time Reversal Channel Measurement

Processing and Imaging).

Get the most optimum speed from the Matlab code by using the

following methods:

• Using parallel processing

• Using GPU with Matlab environment.
1. Write the Bessel h function routine in C++.

2. Convert the rest of the Matlab code loops to C++.

3. Create the call function in Matlab for the C++.

4. Parallelize the C++ code on GPU.

5. Call the functions from within Matlab.

It is clear that the results based on the Hankel function approximation

are not in perfect match with those based on using the Hankel

function itself. Further work needs to be done to create a routine for

Bessel h in C++, then continue the rest of the loops in C++, then call

those functions in the Matlab code after parallelizing them.

Abstract

Objectives

 Results

 Conclusions

 Future Work

 Methods

 References

Methods

Parallelizing the

Loops

Implementing

GPU

Graph

Revised Optimization

Replace all loops

with Kernels

Graph

Converting the

loops in to C++

Implement

GPU

Create the

GPU Kernels

General optimization

Matlab Code

Matlab Code

 General Optimization Procedure

 Revised Optimization Procedure

José M. F. Moura, and Yuanwei Jin, “Time Reversal Imaging by

Adaptive Interference Canceling,” IEEE Trans. Antennas and

Propagation, vol. 56, no. 1, January 2008.

Constantine A. Balanis, Advanced Engineering Electromagnetics, John

Wiley & Sons, Inc., Appendix IV, 1989.

