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 As the developers of the time reversal adaptive  interference 

canceler (TRAIC) time reversal beamformer (TRBF), created a new 

algorithm to detect and locate targets in rich scattering environments. 

It utilizes time reversal in two stages: 1) Anti-focusing: TRAIC 

time reverses and then reshapes the clutter backscatter to mitigate 

the clutter response. 2) Focusing: TRBF time reverses the residual 

backscatter to focus the radar image on the target. Laboratory 

experiments with electromagnetic radar data in a highly cluttered 

environment confirm the superiority of TRAIC-TRBF over conventional 

direct subtraction (DS) beamform imaging. Searching for the optimum 

speed  to implement this algorithm on Matlab, we implemented the 

algorithm utilizing a multi core and a GPU within the Matlab environment. 

Then we created kernel function in C++ and called them from Matlab code. 

While comparing the results we obtained interesting conclusions. 
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Results using Hankel  Approximation In the Paper 
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Results using Besselh 
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CPU

Multi-Core (4)

GPU 5010M

Processor Type Time using Hankel 

function (Besselh) [s] 

Time using Hankel 

Approximation 

instead of Besselh [s] 

CPU - Single 70.501 9.964 

CPU – MultiCore (4) 29.31 6.89 

GPU – M5010 (348) 31.86 7.95 

- The MultiCore (4 cores) calculations is faster than the single 

CPU as expected and also faster than GPU for this example.  

- With more than 4 cores, the speed up factor would be higher 

- With the Hankel function approximation, the multicore 

processing is the fastest 

- The time needed for the transfer of data between the system 

memory and the GPU memory is the determining factor for 

GPU speed in this simple test case.  

- For much more computationally intensive cases, for example 

with more frequency points, it is expected that the GPU time to 

be less than the Multi-Core time.  

- Because the results based on the approximation of Hankel 

function are not in match with the original results, It is 

recommended to use the Multi-Core or the GPU  without 

Hankel function approximation. This is showing a minimum 

speed up factor of 2.  

Finding an optimum procedure for speeding up the simulation 

time for sample case (Time Reversal Channel Measurement 

Processing and Imaging). 

 

Get the most optimum speed from the Matlab code by using the 

following methods: 

• Using parallel processing 

• Using GPU with Matlab environment. 
1. Write the Bessel h function routine in C++. 

2. Convert the rest of the Matlab code loops to C++. 

3. Create the call function in Matlab for the C++.              

4. Parallelize the C++ code on GPU. 

5. Call the functions from within Matlab. 

 

It is clear that the results based on the Hankel function approximation 

are not in perfect match with those based on using the Hankel 

function itself. Further work needs to be done to create a routine for 

Bessel h in C++, then continue the rest of the loops in C++, then call 

those functions in the Matlab code after parallelizing them. 
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