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Abstract 

Ray TracingTheory 

Results Conclusions and Future Work 
Real time ray tracing using the GPU has recently become 

possible and reasonable, but one of the largest bottlenecks 

associated with GPU ray tracing is the movement of model 

data onto the hardware for processing. Implicit Surfaces can 

be represented very compactly, making them ideal for GPU 

architecture.  

Real time ray tracing of general implicit surfaces is widely 

applicable, but very little work has been done regarding the 

rendering of general implicit surfaces on the GPU. Singh2 is 

one of the only published research on the subject. Singh 

uses a pixel shader based approach to great success, but 

with limitations.  

I propose using NVIDIA CUDA as an alternative to pixel 

shaders, to allow for much greater flexibility. I also propose 

using an alternative root finding method known as Ridders’ 

Method, to add robustness to the ray tracing algorithm. 

Ray Tracing produces images by simulating the path of 

light rays through a scene. This process is 

accomplished by starting from the image plane and 

“tracing” the path of a light ray back into a scene.  The 

process of tracing the ray involves checking if the ray 

has intersected any object in the scene. Such an 

intersection implies that the ray was reflected by that 

object. Color and other light information are then 

applied to the ray based on the reflective and refractive 

properties of the object.  This process is repeated for a 

large sampling of rays to produce a final image. 

A Surface in      can be described implicitly by the set of 

all points where a function,                , is equal to 0. This 

set is known as a level set, or level surface, of                . 

Checking for an intersection between a ray and a surface in 

the scene can be reduced to finding the root of the function                

describing the surface, when projected onto                         , 

the parametric function of the ray.                    . This implies 

the ray has intersected the level surface of               .  

(a) 3 Sphere Scene, analytically solved  (b) Torus, Ridders’ / Taylor 

method 

step size 0.3 

(c) Non-Algebraic Blobby described by the level surface:   

Left: Ridders’ / Taylor method, step size: 0.5 

Middle: Ridders’ / Taylor method with invalid roots highlighted 

Right: Bisection / Taylor method, step size 0.5 

A useful colliery of this result is the gradient of                at a 

point is perpendicular to the level set of                at that 

point. This is the definition of the normal vector at a point for 

a surface, which is necessary for computing shading 

information for a surface. 

Ray Marching 
Sing2 suggests a numerical approximation algorithm 

called ray marching. Ray marching consists of two 

steps. First, “march” down the ray, evaluating the 

function at the end points of each march interval. An 

interval extension test can be used to determine if a 

root lies between the interval. If it is determined that a 

root exists in the interval, proceed to step two. Step 

two uses numerical approximation methods to 

approximate the root between a set interval.  

There are two interval extension methods that were 

tested in this experiment: 

1.) The Sign Test:  This test checks for a difference 

in sign between the values of the function at each 

end point. A difference in sign implies the 

existence of a root by the intermediate value 

theorem. It may return a false negative if there are 

an even number of roots in the interval. 

 

 

2.) The Taylor Test: This test checks for not only a 

change in the sign at the end points, but also 

checks for a difference in sign of the first order 

Taylor Series expansion centered on each end 

point and extended to the mid point. This makes 

the method much more robust. 

 

 There are two numerical approximation methods 

 that were tested in this experiment: 

1.) Bisection Method: This method 

 successively bisects the interval, using the 

 midpoint as the approximation of the root at 

 each iteration. 

2.) Ridders’ Method1: This method uses the two 

 end points and the midpoint of the interval to 

 transform the function at the three points to 

 a line. The root of this line is then used as the 

 approximation of the root at each approximation.  

 

The experiment measured  all four possible configurations of 

interval tests and numerical approximation methods. Both 

average frames per second and standard deviation were 

measured. Frames per second was interpreted as the raw 

performance of the algorithm, while standard deviation was 

used to interpret the stability of the algorithm. 

 

The success of a marching method is highly dependant on the 

surface being rendered, but certain patterns did begin to 

emerge. The interval extension test used seemed to have the 

greatest impact on both performance and stability of the 

algorithm. The Taylor test consistently produces higher frame 

rates and lower standard deviation, showing the Taylor test to 

be both fast and robust for use with the GPU architecture. 

 

Ridders’ method did not influence the speed or stability as much 

as hypothesized, but visual inspection of the non-algebraic 

blobby(c), seems to indicate that Ridders’ method produces 

more accurate roots. This should be examined further with 

more rigorous accuracy tests. 

 

The implementation itself was fairly naïve and the load would 

often crash the GPU. Optimization of the code should produce 

greatly improved program stability. 
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