
Real Time Ray Tracing of Implicit Surfaces Utilizing GPGPU Computing
Raymond L. Imber

Department of Computer Science, University of Nevada Las Vegas

Dr. Donald Spickler

Department of Mathematics, Salisbury University

Dr. Enyue Lu

Department of Computer Science, Salisbury University

References

[1] Ridders, C. (1979). "A new algorithm for

computing a single root of a real continuous

function". IEEE Transactions on Circuits and

Systems 26: 979–

980. doi:10.1109/TCS.1979.1084580

[2] Jag Mohan Singh, P.J. Narayanan, "Real-Time

Ray Tracing of Implicit Surfaces on the GPU,"

IEEE Transactions on Visualization and Computer

Graphics, vol. 99, no. RapidPosts, pp. 261-272, ,

2009

Abstract

Ray TracingTheory

Results Conclusions and Future Work
Real time ray tracing using the GPU has recently become

possible and reasonable, but one of the largest bottlenecks

associated with GPU ray tracing is the movement of model

data onto the hardware for processing. Implicit Surfaces can

be represented very compactly, making them ideal for GPU

architecture.

Real time ray tracing of general implicit surfaces is widely

applicable, but very little work has been done regarding the

rendering of general implicit surfaces on the GPU. Singh2 is

one of the only published research on the subject. Singh

uses a pixel shader based approach to great success, but

with limitations.

I propose using NVIDIA CUDA as an alternative to pixel

shaders, to allow for much greater flexibility. I also propose

using an alternative root finding method known as Ridders’

Method, to add robustness to the ray tracing algorithm.

Ray Tracing produces images by simulating the path of

light rays through a scene. This process is

accomplished by starting from the image plane and

“tracing” the path of a light ray back into a scene. The

process of tracing the ray involves checking if the ray

has intersected any object in the scene. Such an

intersection implies that the ray was reflected by that

object. Color and other light information are then

applied to the ray based on the reflective and refractive

properties of the object. This process is repeated for a

large sampling of rays to produce a final image.

A Surface in can be described implicitly by the set of

all points where a function, , is equal to 0. This

set is known as a level set, or level surface, of .

Checking for an intersection between a ray and a surface in

the scene can be reduced to finding the root of the function

describing the surface, when projected onto ,

the parametric function of the ray. . This implies

the ray has intersected the level surface of .

(a) 3 Sphere Scene, analytically solved (b) Torus, Ridders’ / Taylor

method

step size 0.3

(c) Non-Algebraic Blobby described by the level surface:

Left: Ridders’ / Taylor method, step size: 0.5

Middle: Ridders’ / Taylor method with invalid roots highlighted

Right: Bisection / Taylor method, step size 0.5

A useful colliery of this result is the gradient of at a

point is perpendicular to the level set of at that

point. This is the definition of the normal vector at a point for

a surface, which is necessary for computing shading

information for a surface.

Ray Marching
Sing2 suggests a numerical approximation algorithm

called ray marching. Ray marching consists of two

steps. First, “march” down the ray, evaluating the

function at the end points of each march interval. An

interval extension test can be used to determine if a

root lies between the interval. If it is determined that a

root exists in the interval, proceed to step two. Step

two uses numerical approximation methods to

approximate the root between a set interval.

There are two interval extension methods that were

tested in this experiment:

1.) The Sign Test: This test checks for a difference

in sign between the values of the function at each

end point. A difference in sign implies the

existence of a root by the intermediate value

theorem. It may return a false negative if there are

an even number of roots in the interval.

2.) The Taylor Test: This test checks for not only a

change in the sign at the end points, but also

checks for a difference in sign of the first order

Taylor Series expansion centered on each end

point and extended to the mid point. This makes

the method much more robust.

 There are two numerical approximation methods

 that were tested in this experiment:

1.) Bisection Method: This method

 successively bisects the interval, using the

 midpoint as the approximation of the root at

 each iteration.

2.) Ridders’ Method1: This method uses the two

 end points and the midpoint of the interval to

 transform the function at the three points to

 a line. The root of this line is then used as the

 approximation of the root at each approximation.

The experiment measured all four possible configurations of

interval tests and numerical approximation methods. Both

average frames per second and standard deviation were

measured. Frames per second was interpreted as the raw

performance of the algorithm, while standard deviation was

used to interpret the stability of the algorithm.

The success of a marching method is highly dependant on the

surface being rendered, but certain patterns did begin to

emerge. The interval extension test used seemed to have the

greatest impact on both performance and stability of the

algorithm. The Taylor test consistently produces higher frame

rates and lower standard deviation, showing the Taylor test to

be both fast and robust for use with the GPU architecture.

Ridders’ method did not influence the speed or stability as much

as hypothesized, but visual inspection of the non-algebraic

blobby(c), seems to indicate that Ridders’ method produces

more accurate roots. This should be examined further with

more rigorous accuracy tests.

The implementation itself was fairly naïve and the load would

often crash the GPU. Optimization of the code should produce

greatly improved program stability.

http://en.wikipedia.org/wiki/Digital_object_identifier
http://dx.doi.org/10.1109%2FTCS.1979.1084580

