
Trial Division Method 
The most straightforward way to find the factorization of a 

number is to compute a list of the primes up to the square 

root of the number and try dividing by each of them. This 

will always yield a factor, but it is very slow for large factors. 

To parallelize it you simply perform each division in parallel 

using the GPU. 

Results 
After much programming and even more debugging, we 

have obtained some factorization times that show the GPU 

as the clear winner in factoring speed for the two 

algorithms, when compared with the serial version of the 

same algorithm. Also note that the speed-up is much 

greater for Brent’s method than for Trial. This is because 

Brent’s method is less data-intensive and more compute-

intensive, and thus better suited for the GPU. In the lower 

two graphs we compare the two algorithms on the CPU 

and GPU. For each system, the Trial division is faster for 

small numbers and then Brent’s method becomes faster for 

larger ones. 

Conclusions 
Based on the results we can see that at least these 

particular algorithms benefit from parallelization on the 

GPU.  The times we have obtained may not, however, be 

optimal and in future work, the program could be 

optimized to handle larger numbers as well. Also, in the 

future general purpose algorithms should be explored. 

Brent’s Method 
This variant of Pollard’s rho method uses a pseudorandom 

sequence to search for factors with a higher probability of 

finding one faster than trial division.  The evaluation of each 

sequence is not readily parallelizable, but since not all 

sequences generate a non-trivial factor, it can be 

accelerated by testing many different sequences in parallel. 
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Brent’s Method Pse 
(1) Set x = x0 Mod N;  

        y = x0^2 + a Mod N and k = 1. 

(2) if (gcd(x-y; N) > 1) then 

(3)   return (gcd(x-y; N)) 

(4) end if 

(5) while (1) do 

(6)   Set x = y. 

(7)   for (j = 1 to k) do 

(8)     Set y = y^2 + a Mod N. 

udocode 
(9)   end for 

(10)   for (j = 1 to k) do 

(11)     Set y = y^2 + a Mod N. 

(12)     if (gcd(x-y; N) > 1) then 

(13)       return (gcd(x-y; N)) 

(14)     end if 

(15)   end for 

(16)   Set k = 2 k. 

(17) end while 

Introduction and Motivation 
The RSA cryptosystem is in wide use today securing email, 

online credit card transactions and more. Following is the 

method: 
• Choose two primes 𝑝 and 𝑞. 

• Compute 𝑛 = 𝑝𝑞. 

• Compute φ(𝑛) = (𝑝 − 1)(𝑞 − 1), where φ is Euler’s totient function. 

• Choose 𝑒 such that 1 < 𝑒 <  (𝑛), gcd (𝑒, φ(𝑛)) = 1. 

• The public key is 𝑒 and 𝑛. 

• Compute private exponent 𝑑 as 𝑑 ≡ 𝑒−1(𝑚𝑜𝑑 (𝑛)). 
• 𝑑 is kept as the private key. 

• Anyone can now encrypt a message represented by a number 𝑚 by 

calculating the cyphertext 𝑐 = 𝑚𝑒(𝑚𝑜𝑑 𝑛). 

• Only the possessor of the private key can decrypt by calculating 𝑚 =
𝑐𝑑 (𝑚𝑜𝑑 𝑛). 

The only known way to obtain the private exponent d 

mathematically, and thus break the encryption, is to find the 

factors 𝑝 and 𝑞 of 𝑛. Factorization is an exponentially 

complex computation, and therein lies the security of RSA 

because even with today’s supercomputers it is virtually 

impossible to factor the 300-400 decimal digit numbers 

currently used for RSA key numbers in a reasonable 

amount of time. 

 

There are two main types of factoring algorithms in use 

today; special purpose, which are good at finding factors of 

particular form, and general purpose, which can be used to 

factor any integer regardless of the form of the factors. We 

implemented two special purpose algorithms for use on a 

standard CPU for benchmarking, and on a CUDA enabled 

GPU, where we took advantage of parallelization to 

accelerate the processes. 


