
QUICK TIPS

(--THIS SECTION DOES NOT PRINT--)

This PowerPoint template requires basic PowerPoint

(version 2007 or newer) skills. Below is a list of

commonly asked questions specific to this template.

If you are using an older version of PowerPoint some

template features may not work properly.

Template FAQs

Verifying the quality of your graphics

Go to the VIEW menu and click on ZOOM to set your

preferred magnification. This template is at 100%

the size of the final poster. All text and graphics will

be printed at 100% their size. To see what your

poster will look like when printed, set the zoom to

100% and evaluate the quality of all your graphics

before you submit your poster for printing.

Modifying the layout

This template was specifically designed for a 48x36

tri-fold presentation. Its layout should not be

changed or it may not fit on a standard board. It has

a one foot column on the left, a 2 foot column in

the middle and a 1 foot column on the right.

The columns in the provided layout are fixed and

cannot be moved but advanced users can modify any

layout by going to VIEW and then SLIDE MASTER.

Importing text and graphics from external sources

TEXT: Paste or type your text into a pre-existing

placeholder or drag in a new placeholder from the

left side of the template. Move it anywhere as

needed.

PHOTOS: Drag in a picture placeholder, size it first,

click in it and insert a photo from the menu.

TABLES: You can copy and paste a table from an

external document onto this poster template. To

adjust the way the text fits within the cells of a

table that has been pasted, right-click on the table,

click FORMAT SHAPE then click on TEXT BOX and

change the INTERNAL MARGIN values to 0.25.

Modifying the color scheme

To change the color scheme of this template go to

the DESIGN menu and click on COLORS. You can

choose from the provided color combinations or

create your own.

QUICK DESIGN GUIDE
(--THIS SECTION DOES NOT PRINT--)

This PowerPoint 2007 template produces a 36”x48”

tri-fold presentation poster. You can use it to create

your research poster and save valuable time placing

titles, subtitles, text, and graphics.

We provide a series of online tutorials that will

guide you through the poster design process and

answer your poster production questions.

To view our template tutorials, go online to

PosterPresentations.com and click on HELP DESK.

When you are ready to print your poster, go online

to PosterPresentations.com.

Need Assistance? Call us at 1.866.649.3004

Object Placeholders

Using the placeholders

To add text, click inside a placeholder on the poster

and type or paste your text. To move a placeholder,

click it once (to select it). Place your cursor on its

frame, and your cursor will change to this symbol

Click once and drag it to a new location where you

can resize it.

Section Header placeholder

Click and drag this preformatted section header

placeholder to the poster area to add another

section header. Use section headers to separate

topics or concepts within your presentation.

Text placeholder

Move this preformatted text placeholder to the

poster to add a new body of text.

Picture placeholder

Move this graphic placeholder onto your poster, size

it first, and then click it to add a picture to the

poster.

RESEARCH POSTER PRESENTATION DESIGN © 2012

www.PosterPresentations.com

© 2013 PosterPresentations.com

 2117 Fourth Street , Unit C

 Berkeley CA 94710

 posterpresenter@gmail.com
Student discounts are available on our Facebook page.

Go to PosterPresentations.com and click on the FB icon.

As the use of graphic-processor units (GPU) to obtain faster

performance improvements becomes more popular, the use of CUDA

as a programming model for GPUs for use by C/C++ programmers

has increased as well. In this investigation, I present the use of

multiple languages on a GPU computation platform exploring

extended precision integer arithmetic, specifically Java and C in

CUDA. To do so, I used a programming interface called JCUDA that

can be used by Java programmers to invoke CUDA kernels. By using

this interface, programmers can write Java codes that directly call

CUDA kernels and generate the Java-CUDA bridge codes and allows

for the host device data transfer to the GPU. As a benchmark

application for run times, I used the factoring of large semi-primes

using a quadratic sieve method. While still slower than C in CUDA,

the preliminary performance results show that this interface

delivers a significant performance improvement to Java

programmers.

Abstract

Background Information

Conclusion

By the results, I have seen that factoring in CUDA with C is faster

than using JCUDA on the GPU. While the surprise came on the CPU

side, the GPU results were what was expected. Using JCUDA and

Java brings some overhead, especially during data transfer which

causes the overall algorithm to be slower. By increasing the array

size and the number of threads used on the GPU using both JCUDA

and CUDA, I was able to make the algorithm more efficient. Using

JCUDA allowed me to use Java and also explore using multiple

languages on the GPU.

References

• Donald Knuth, Seminumerical Algorithms: the Art of Computer

Programming, v.2 (Addison-Wesley Publishing Co.,Reading,MA,

1981.

• Wade Trappe and Lawrence Washington, Introduction to

Cryptography with Coding Theory, ed. 2 (Pearson, 2006)

• Neal R. Wagner: The Laws of Cryptography: The RSA

Cryptosystem

• Philip C. Pratt-Szeliga: “ Rootbeer: Seamlessly using GPUs from

Java”

• Connelly Barnes: “Integer Factorization Algorithms”

• CUDA by Example: An Introduction to General-Purpose GPU

Programming (29 July 2010) by Jason Sanders, Edward Kandrot

• jcuda.org

Acknowledgements

• NSF REU (Research Experiences for Undergraduates)

EXERCISE - EXplore EmeRging Computing In Science and Engineering

program. Award #1156509

• Salisbury University: Henson School of Science & Technology

Kelly O’Conor, Advisor: Dr.Don Spickler

Originally, I intended to use Rootbeer in order to use Java on the

GPU.

Developed by Philip C. Pratt-Szeliga, a Ph.D candidate at Syracuse

University, the Rootbeer GPU Compiler makes it easy to use

Graphics Processing Units from within Java. Rootbeer automatically

(de)serializes complex graphs of objects into arrays of primitive

data and generates the CUDA code through a static analysis of the

Java Bytecode.

Unfortunately while the sample codes ran, when I used the Big

Integer class needed for factoring instead of the int class in Java,

Rootbeer failed.

• Surprising to anyone who has worked with Java and C/C++, the

Java-CPU version of the algorithm was faster than the C

implementation. This is due to the use of the built in Java Big

Integer class which has been optimized to be the fastest versus

the Big Int class that was written in C.

To continue, I could revise the algorithms in the BigInt struct (class)

to be more efficient, making the C code on the CPU side faster.

Then, I could look into revising the C side of the code to use CUMP

(The CUDA Multiple Precision Arithmetic Library). Finally, I can look

at alternative ways to relate the Java BigInteger class to the C

BigInt struct.

The Quadratic Sieve Factoring method was the benchmark

application for runtime comparisons.

The QS consists of two major steps: the sieving step, to collect the

relations, and the matrix step, where the relations are combined

and the factorization is derived. For numbers in the current range,

the sieving step is by far the most time consuming. It is also the

step that allows easy parallelization.

A GPU (Graphics Processing Unit) is a highly parallel computing

device designed for the task of graphics rendering. Due largely in

part to the demand for high definition graphics, 3D gaming, and

multimedia experiences, the GPU has evolved into a very parallel,

multithreaded, multi-core, more general processor allowing users

to program certain aspects of the GPU to create detailed graphics

and scientific application. In general, the GPU has become a

powerful device for the execution of data-parallel, arithmetic

intensive applications in which the same operations are carried out

on many elements of data in parallel. Example applications include

video processing, machine learning, and 3D medical imaging.

The NVIDIA’s Compute Unified Device Architecture (CUDA) has

become the popular programming model for GPUs for use by C/C++

programmers. The basic idea behind computing on the GPU is to use

to speed up and accelerate specific computations in applications,

which traditionally are done by the CPU (Central Processing Unit).

While using CUDA, a written application contains two sections of

code: functions on the CPU host and functions on the GPU device.

The functions for the GPU are labeled with the keyword global and

are called kernels. The kernel, which operates across an array of

data, executes across a set of parallel threads in parallel. Triple

angle brackets mark a call from host code to device code. CUDA

enables dramatic increases in computing performance by harnessing

the power of the graphics processing unit.

 The Quadratic Sieve Factoring Method

JCUDA

GPU Processing and CUDA

Pros/ Cons of JCUDA

Villanova University, Salisbury University

Using Multiple Languages on a GPU Computation Platform

JCUDA is designed to be an interface for invoking CUDA kernels

from Java code. The JCuda driver has the bindings to load and

execute a CUDA kernel. Written mainly in Java, the sample reads a

CUDA file which is written in C, compiles it to a PTX file. Then using

NVCC, loads the PTX file as a module and executes the kernel

function then copies the device output back to the host.

Rootbeer

Methods & Results

Rootbeer Sample Code

Pros:

• JCUDA provides access to CUDA for Java programmers, exploiting

the full power of GPU hardware from Java based applications.

Using JCUDA you can create cross-platform CUDA solutions, that

can run on any operating system supported by CUDA without

changing your code

• Using Java allows access to the huge library. Specifically, the use

of the Big Integer class increased the speed of the algorithm run

on the CPU using Java

Cons: The overhead introduced by data transfers can overwhelm

the benefits of fast GPU computation which is shown with the

results of the GPU factoring time

Windows : Windows 7 Enterprise Edition (64-bit) Service Pack 1

(Build 7601)

Memory (RAM): 8184 MB

CPU Info: Intel(R) Xeon(R) CPU E5607 @ 2.27GHz

Display Adapters : NVIDIA GeForce GTX 670 / 1344 cores / 2 GB

GDDR5 Memory / 7 multi-processors

Advancement

Results

Threads 1024 512 256 50 32 16

Array Size 10,000 10,000 10,000 100,000 10,000 10,000

jCUDA GPU 0.827443 0.836954 0.887679 0.914231 0.926175 1.021283

CUDA GPU 0.293672 0.305529 0.302422 0.455956 0.467900 0.748837

0

0.2

0.4

0.6

0.8

1

1.2

S
e
c

o
n

d
s

GPU Factoring Time with Varying Thread Sizes

Array Size 50 200 1000 10000 100000

C 2.18087 2.18020 2.18480 3.81502 5.5612

Java 0.05640 0.05573 0.06033 0.10389 0.40436

0.00000

1.00000

2.00000

3.00000

4.00000

5.00000

6.00000

7.00000

S
e

c
o

n
d

s

CPU Factoring Times with Varying Array Sizes

JCuda sample kernel call

• By changing the amount of digits of the number being factored,

the times progressively got slower. JCUDA proved to still be

slower than CUDA on the GPU. This is due to the data transfer

from the CPU to the GPU in JCUDA. By chopping the Big Integers

into an array of ints, I was able to send the big numbers to the

GPU, this however was relatively very time consuming.

• The results of factoring on the GPU were not surprising like the

results on the CPU. As the number of threads increased, the

speed on the GPU also increased. The JCUDA takes a hit due to

the overhead of Java and also the data transfer time, which is

naturally must faster on C.

The C Code it calls

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

11 12 13 14 15 16 17 18

S
e
c
o

n
d

s

Factoring Times with Varying Digit Sizes

JCUDA

CUDA

JAVA CPU

http://www.facebook.com/pages/PosterPresentationscom/217914411419?v=app_4949752878&ref=ts

