
Implementing the Parallel Iterative Improvement Algorithm for
the Stable Marriage Problem on GPUs

Andrew A. Barkley1, Justin A. Martin2

1State University of New York, Potsdam, New York, 2Lock Haven University, Lock Haven, Pennsylvania

Abstract
We implemented a parallel algorithm for finding a stable matching on mas-
sively parallel graphics processing units (GPUs). The algorithm is the Parallel
Iterative Improvement (PII) Algorithm for the Stable Matching Problem [5]. It
has applications in real-time communication switching networks [4].

Introduction
The stable matching problem is often similarly stated as follows: “Given n
men, n women, and 2n ranking lists in which each person ranks all members
of the opposite sex in order of preference, a matching is a set of n pairs of
men and woman with each person in exactly one pair. A matching is unstable
if there are two persons who are not matched with each other, and each of
whom strictly prefers the other to his/her partner in the matching; otherwise,
the matching is stable” [5]. The PII algorithm has O(n log n) complexity [5]. Ko-
rakakis simulated the Gale-Shapley (GS) and PII algorithms on MPI clusters
[3]. Our claim is that these implementations are bottlenecked by the communi-
cation network between cluster nodes. The GPU should provide a significant
speedup over these implementations by eliminating the bottleneck.

1. The PII Algorithm
The PII algorithm has two phases: the initialization phase and the iteration
phase. The initiation phase entails generating a random matching. The iter-
ation phase iteratively searches for new matchings in the hope of finding one
with fewer unstable pairs. The goal is to iterate until the algorithm converges
with no unstable pairs. The algorithm incorporates alternating between the
two phases, to counteract cycling, until a stable match is found. The algo-
rithm can be stopped at any point to output the current matching. Each step in
the PII algorithm is parallel, so the algorithm can be implemented on parallel
architectures such as MPI clusters and GPUs [5, 4, 3, 2].

2. PII on GPUs
Since the PII algorithm is parallel, it is natural to implement it on parallel archi-
tectures such as MPI clusters and the GPU. The GPU provides an advantage
over the MPI cluster. MPI clusters are often constrained by the communica-
tion network bottleneck between nodes. Since the PII requires frequent com-
munication between execution units, this bottleneck would be significant. In
contrast, and to our advantage, the GPU has a large pool of high speed, low
latency, global memory which is available to all execution units. For example,
the effective memory clock rate of a NVIDIA GeForce GTX 770 is about 7000
MHz. This translates to a latency of 1.4× 10−10 seconds (0.14 nanoseconds).
A typical InfiniBand MPI cluster interconnect may have latencies on the order
of milliseconds (10−6 seconds). This illustrates an advantage of four orders of
magnitude with the GPU. This high speed, low latency pool of global mem-
ory should provide a low-latency means of communication between execution
units [1]. This feature of the GPU, coupled with the large number of execution
units on chip, makes us anticipate a significant speedup for the PII algorithm
from MPI clusters to the GPU.

3. The CUDA Implementation
NVIDIA’s Compute Unified Device Architecture (CUDA) provides an elegant
API for implementing the PII algorithm [6]. Each thread of execution running
on the card can be uniquely referred to in the kernels, the C functions which
run on the card. This allows us to easily program the processor elements
referred to in the algorithm to individual threads in the API. Pointers can eas-
ily be kept between processor elements and communicated in a low-latency
manner, as described in the algorithm.
We implemented each step in the PII algorithm with one or more separate
CUDA kernels. Most of these are launched with n2 threads, while some are
launched with n, depending on the constraints of the algorithm at that step.
The CUDA C API organizes threads in to groups called blocks and the blocks
in turn are grouped into grids. We implemented the kernels that were launched
with n2 threads by launching the kernel with n blocks per grid and n threads
per block. While this provides a convenient way to program in the API, it limits
the scalability of the implementation to n = 1, 024. This is a result of the limit
of 1, 024 threads per block by NVIDIA [6]. However, this is not a huge concern
as NVIDIA’s GPUs usually have between one and two thousand simultaneous
executing units. That means that beyond a certain problem size, the GPU
scheduler will have to begin serializing access for the logical threads to the
physical execution units. The algorithm requires n2 processors to achieve the
O(n log n) complexity. However, in this scenario, the number of execution units
is smaller than n2, resulting in serialization. A real limit to the scalability of the
GPU for this problem exists, due the limited number of execution units on the
GPU. Our implementation should utilize the card quite well.

4. Results

 0.0001

 0.001

 0.01

 0.1

 1

2 4 8 16 32 64 128 256 5121024

R
u
n
ti

m
e
 (

se
c
o
n
d
s)

n

Figure 1: n versus runtime (seconds)

5. Conclusion
GPUs are readily available and cost-efficient ways to compute lots of data for
throughput intensive applications. The massively parallel architecture does so
much work that latency can even be improved by reducing the computation
time of complex algorithms. The PII algorithm demands this kind of efficiency.
It is not unreasonable to imagine a variants of PII algorithm running on a GPU-
enabled router. CUDA provides a conveniently simple and powerful API to the
hardware. OpenCL is another API to program chips, including those other
than NVIDIA’s and GPUs. Doubtlessly, there is much optimization to be made
to the implementation we created. This may take considerably more time to
develop. Map/Reduce/Hadoop might be a possible implementation platform
for an adaption of the PII algorithm. Natural modifications to this implemen-
tation would to implement smart initialisation and cycle detection and limited
preference lists [7].

Acknowledgment
The authors would like to thank the faculty at Salisbury University and the NSF
for both time and money to support our experience this summer. We would
like to express particular gratitude to Drs. Enyue Lu, Donald Spickler, Yuan-
wei Jin, and Arthur Lembo for their dedication to this summer’s success. Fund-
ing from NSF CCF-1156509 under Research Experiences for Undergraduates
Program (REU).

References

[1] Cook, S., CUDA Programming: A Developer’s Guide to Parallel Computing
with GPUs, Morgan Kaufmann, 2012.

[2] Gale, D. and Shapley, L.S. College Admissions and the Stability of Mar-
riage, American Mathematical Monthly 69, 9-14, 1962.

[3] Korakakis, E., Examining the Parallelization Limits of the Stable Matching
Problem, Master’s Thesis, University of Edinburgh, 2005

[4] Lu, E. Parallel Algorithms for High Performance Switching in Communica-
tion Networks, Dissertation, The University of Texas at Dallas, 2004.

[5] Lu, E. and Zheng, S. Q. A Parallel Iterative Improvement Stable Matching
Algorithm, HiPC 213, LNCS 2913, 55-65, 2003.

[6] NVIDIA Corporation, CUDA C Programming Guide, http://docs.
nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf, Febru-
ary 2014.

[7] White, C., Lu, E., An Improved Parallel Iterative Improvement Algorithm
for Stable Matching, Extended Abstract, Companion of IEEE/ACM Interna-
tional Conference for High Performance Computing, Networking, Storage
and Analysis (SuperComputing), Denver, CO, Nov. 2013.

SUCSREU2014, Salisbury University Computer Science REU Poster Session August 2014 Salisbury, Maryland, U.S.A.


