
Markov MapReduce Algorithm

Markov clustering is based on simulated stochastic flow in an intuitive
notion that if a person were to randomly walk along the edges of the
graph, after several such walks, they are more likely to keep walking
within their current cluster than they are to leave for a different
cluster.

The main steps of the Markov clustering MapReduce algorithm:
1. Create a matrix that represents the graph
2. Normalize each column to represent the probabilities for random

walks
3. Simulate a random walk by multiplying the matrix
4. Normalize the columns again to strengthen intra-cluster edges and

weaken inter-cluster edges
5. Repeat steps 3-4 until the matrix converges to reach a steady state

Barycentric Clusters Barycentric MapReduce Algorithm

Barycentric clustering is based on the physics ball and spring model,
which treats vertices as balls and the edges between them as springs.
Intuitively, balls mutually connected by many springs will naturally
clump together.

The main steps of the Barycentric clustering MapReduce algorithm:
1. Generate random physical positions for each vertex
2. For each vertex:
 2.1. Calculate the forces from its neighbors
 2.2. Update its position based on the neighbors’ forces
 2.3. Calculate the local average length based on the forces
 2.4. Delete edges that exceed the local average length
3. Repeat step 2 for 5 iterations

Large-scale graphs representing data from real-world networks are
usually non-uniform and contain underlying structures. Graph
clustering, a process of identifying these structures, has many
applications. Given the massive sizes of modern graph data sets,
which consist of millions or billions of vertices and edges, it is difficult
or even impossible to process them on a single computer. In this
project we take advantage of MapReduce, a programming model
suitable for processing large data sets, for graph clustering. The aim
of our project is to demonstrate efficient and scalable
implementations of clustering algorithms using MapReduce and
analyze their performance on the distributed cloud computing
platform Amazon EC2. Three different types of graph clustering
algorithms are considered: graph theory based k-Trusses clustering,
physics model based Barycentric clustering, and probability based
Markov clustering. We also compare the scalability, effectiveness,
and accuracy of these algorithms for identifying clusters in various
data sets acquired from Stanford SNAP.

Abstract

Clustering Algorithms for Large-Scale Graphs Using MapReduce
Chris Joseph1 (undergraduate) • Stephen Krucelyak2 (undergraduate) • Enyue Lu2 (faculty mentor) • Jack Slettebak3 • Matthias K. Gobbert3

1Department of Computer Science • Stony Brook University • Stony Brook, USA
2Department of Math and Computer Science • Salisbury University • Salisbury, USA

3Department of Mathematics and Statistics • University of Maryland, Baltimore County • Baltimore, USA

In a K-Truss, all edges belong to at least K-2 triangles. Trusses are a
relaxation of cliques (complete sub-graphs), which are
computationally hard to find. Trusses capture most of the
characteristics of cliques without being overly restrictive. Larger K
values identify more tightly connected clusters.

The main steps of the K-Trusses clustering MapReduce algorithm:
1. Augment each edge by computing the degrees of its end vertices
2. Find all triangles in the graph using augmented edges
3. For each edge, count the number of triangles containing that edge
4. If any edge is not part of K-2 triangles, delete it
 4.1. If any edges were deleted, return to step 1
 4.2. If no edge was deleted, the algorithm terminates

K-Trusses MapReduce Algorithm

Markov Clusters

 Clustering algorithms were implemented on Amazon Elastic Cloud
Compute (EC2) service.

 Each virtual machine on EC2 was fitted with 8 64-bit virtual CPU
cores, 7GB of memory and a minimum of 100Mbps bandwidth.

 Experimental results were obtained by running algorithms on 1, 2,
4, 8 and 16 machines.

 Figure 1 shows the scalability of Barycentric clustering algorithm
on Google+ dataset (13,673,453 edges and 107,614 vertices).

 Figure 2 shows the scalability of K-Trusses and Barycentric
clustering algorithms on various datasets using 16 machines.

Algorithm Implementation Platform

K-Trusses Clusters

Acknowledgement: This work is funded by NSF CCF-1460900 under Research Experiences for Undergraduates Program.

