
Testing concurrent software using Java PathFinder (JPF):
An implementation of the Stable Matching Algorithm using the Actor model

Ihar Laziuk1, Devin Etcitty1, Steven Lauterburg2, Ph.D. (Faculty Mentor)
1Columbia University, 2Salisbury University

The problem pertains to Actor-based software testing

and determining which different message scheduling

produces optimal results .

Concurrent software allows for efficient handling of

large data, including remote machines. However, it is

difficult to design and predict accurate results with

multiple threads running. Tools for concurrent

software testing help to explore and analyze all

possible output scenarios within a given application

before its deployment.

We implemented an Actor-model based Stable Matching

algorithm using the ActorFoundry framework and tested

the implementation using NASA’s Java PathFinder

testing tool.

Exhaustively exploring all possible message delivery

schedules can be very costly. To manage this cost, the

tool’s jpf-actor module provides multiple dynamic partial

order reduction algorithms and message scheduling

heuristics to more efficiently handle messages for the

application to be tested.

Our experiments applying dynamic partial order

reduction algorithms and message ordering schedules

showed that use of DPOR reduces the time needed to

exhaustively test the program.

Results for Different Message Scheduling

1. S. Lauterburg, M. Dotta, D. Marinov and G. Agha, “A Framework for State-Space Exploration

of Java-based Actor Programs,” 2009 IEEE/ACM International Conference on Automated

Software Engineering, IEEE Computer Society, Washington, DC, USA, 2009

2. S. Lauterburg, “Systematic Testing for Actor Programs,” Dissertation, The University of Illinois

at Urbana-Champaign, 2011

3. S. Lauterburg, R. Karmani, D. Marinov and G. Agha, “Evaluating Ordering Heuristics for

Dynamic Partial-Order Reduction Techniques,” Fundamental Approaches to Software

Engineering 2010, Lecture Notes in Computer Science Volume 6013, 2010, pp 308-322

4. D. Gale and L. S. Shapley, “College Admissions and the Stability of Marriage,” The American

Mathematical Monthly, Vol. 120, N. 5 (May 2013), pp. 386-391.

5. Based on the Java implementation at http://rosettacode.org/wiki/Stable_marriage_problem

This research is funded by the National Science Foundation CCF-1460900 under the Research

Experience for Undergraduates Program.

Simple Actor Model Diagram

State Exploration Tree

DPOR* Applied Data (base and combination)

Different Combination with NO DPOR* applied

Another combination of

the same number of self-

destroying actor classes

yields different results.

(e.g., for 2 actor-classes

killed order A: 1 & 3 vs

order B: 1 & 2, we obtain

different numbers)

NO DPOR* Applied

Applying JPF’s different

heuristics for message

scheduling (LIFO, FIFO,

EAC, LAC) demonstrated

no differences.

Self-destroying actor

classes leads to more

messages delivered and

more new actors created

*DPOR - Dynamic Partial Order Reduction

of actor classes destroyed (order A)

of actor classes destroyed (order B)

of actor classes destroyed

A matching M is stable if there is no pair (m, w) of

man m and a woman w satisfying the following

conditions:

• m and w are not married in M

• m prefers w to his current partner in M

• w prefers m to her current partner in M

The *Stable Matching algorithm was implemented

using ActorFoundry, an academic Actor-based

framework for developing concurrent applications.

The algorithm was tested in NASA’s Java PathFinder

actor module (jpf-actor) in order to explore different

orderings of message processing.

An Actor is an atomic unit of computation for which

the following axioms hold:

• Can send and receive messages

• Create new actors

• How to process next message

http://img.blog.csdn.net/20140922215103989

Purpose

Introduction

Methods & Materials

*Stable Matching

Conclusions

References

Acknowledgements

