
Fig 1. Network input
(x10 undersampled)

Deep Learning for Image Reconstruction
Cain Gantt1, Yuanwei Jin2

1Department of Mathematics, Georgia College and State University, Milledgeville, GA
2Department of Engineering and Aviation Sciences, University of Maryland Eastern Shore, Princess Anne, MD

Abstract
Within the past twelve months, convolutional neural networks

(CNNs) have been applied to enhance sparse-view reconstruction in
computed tomography (CT) imaging. Due to the wide variety of
parameters and network configurations possible, it remains unclear
how to create and train a CNN to aid in image reconstruction. We
investigate specific choices in the implementation of the CNN,
including the network architecture, training parameters, and data
preprocessing, to determine effects on the images produced by the
network. Our implementation is modeled after an existing CNN
used for sparse-view CT reconstruction, providing a baseline against
which to compare the effectiveness of network outputs. By building
and training a variety of networks with variations in configuration,
we are able to examine the reconstruction artifacts present to guide
further network design. Through the comparison different networks,
we found that the most effective adjustments to parameters are those
that increase the number of learnable values in the network,
including increasing the total number of convolutional layers and
increasing the number of feature maps produced by convolutional
layers.

Results
The networks examined produced output shown in the figures

to the left. Figure 1 displays the reconstruction created with x10
undersampling that was used as input to the network, and Figure 2
displays the corresponding full-view reconstruction.

Figure 3 contains output from a network trained using contrast-
enhanced input data. Each image is adjusted to saturate the darkest
1.5% of pixels to a value of zero (black) and the brightest 0.5% of
pixels to one (white). This network has 64 filters in the first
convolutional layer, and contains four pooling stages. The network
was trained over 10 epochs with a batch size of one.

Figures 4-6 display output from networks with two, three, and
four sets of pooling and transposed convolution layers, respectively.
Each network starts with 64 convolution filters, reaching respective
maxima of 256, 512, and 1024 filters in a single layer.

Figures 7 and 8 display output from networks each with two
pooling stages and either 32 or 128 filters in the first convolutional
layer, respectively.

Figures 9 and 10 display output from networks trained over ten
epochs with batch sizes of two and three, respectively. These
networks have two pooling stages, and contain 64 filters in their first
convolution layers.

Figures 11 and 12 display output from networks trained over
five and twenty epochs, respectively, and a batch size of one. These
networks have four pooling stages, and contain 64 filters in their
first convolution layers.

Restrictions imposed by software necessitate inconsistencies in
the hardware utilized for training. Some networks were trained on
GPU, others could run in parallel on a 12-core CPU, while others
could only train in serial.

Acknowledgements
This research was made possible by the Salisbury University

EXERCISE REU program, funded by National Science Foundation
grant CNS-1757017. Special thanks to System Administrator
Richard Quackenbush.

Methods
Training data are computed tomography (CT) scans obtained

from The Cancer Imaging Archive. Preprocessing consists of
calculating the Radon transformation (radon function in MATLAB)
with 1000 views. Network inputs with undersampling rates of x5,
x10, and x20 are created by computing the Inverse Radon (iradon)
transformation with 200, 100, and 50 views, respectively, while the
ground truth is created using all 1000 views. Network inputs are
randomly mirrored and rotated to prevent overfitting during training.

Networks are implemented in MATLAB using the Neural
Network Toolbox and trained using NVIDIA CUDA-enabled GPUs.
Given a set of 1000 pairs of images (input and ground truth),
networks are trained with 10 iterations (epochs) over the dataset.
Learnable parameters are updated using a stochastic gradient
descent algorithm with momentum of 0.99. Gradient updates are
limited to 0.01 to prevent divergence during training. The initial
learning rate is 0.01 and scales by 0.7943 each epoch.

The network architecture is modeled after the FBPConvNet
created by McCann, et al. Each convolutional layer is followed by a
batch normalization layer and a rectifier layer. Nested pairs of
pooling and transposed convolution layers interspersed with
convolutions increase and decrease the number of convolution
filters in each stage. Connections that bypass pooling stages retain
spatial information learned earlier in the network. We also include a
residual connection to bypass all convolution layers before output.

Fig 2. Ground Truth
(No undersampling)

Fig 3. imadjust preprocessing
(SNR: 13.90510)

Fig 4. Two pooling stages
(SNR: 14.23028)

Fig 5. Three pooling stages
(SNR: 19.94556)

Fig 6. Four pooling stages
(SNR: 19.19452)

Fig 7. 32 initial filters
(SNR: 21.29991)

Fig 8. 128 initial filters
(SNR: 22.07604)

Fig 9. Batch size of 2
(SNR: 21.62261)

Fig 10. Batch size of 3
(SNR: 21.84305)

Fig 11. Five epochs
(SNR: 16.92864)

Fig 12. Twenty epochs
(SNR: 15.14064)

Conclusion
All networks seem to insufficiently suppress subsampling

artifacts in the background region of the CT scans. This results in
low signal-to-noise ratios (SNRs) for most network outputs.
However, networks with a greater number of layers produce fewer
artifacts and preserve finer details within the patient, where such
qualities are more desirable. Further research could address the
inability of the SNR to quantify this phenomenon.


