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Abstract

Heavy-tailed data presents issues with unsupervised learning 
algorithms such as Principal Component Analysis (PCA) and 
Independent Component Analysis (ICA) that depends on having 
finite lower moments. Heavy-tailed data, by nature, does not 
necessitate finite first (mean) and second (variance) moments. In 
this project, we looked at applying the convex floating body as a 
filter on a Cauchy distribution-skewed data for PCA and ICA and 
the effectiveness of that filter. 

Conclusions
In the end, the current results are inconclusive. It seems the floating body has 
transformed the data for PCA, but more work still needs to be done to verify the 
results so far. In regards to ICA, we ran into issues with the fastICA implementation 
having trouble converging for the cost function. More time and work would be useful in 
correcting the error and being to test if the original signals can be recovered. We also 
were not able to test other distribution besides Cauchy and did not get to the 
parallelization of the code. We still plan on continuing working on the project after the 
REU program ends to achieve more conclusive results.
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Background

Heavy-tailed data has many applications in real world scenarios 
and result naturally in many complex systems. The central limit 
theorem, which states as the number random variables 
increases, the mean approaches a fixed value, is violated as the 
data could have a non-finite or infinite variance or mean 
(Markovich). Thus, relying on algorithms of methods that depend 
on finite lower moments would not be using accurate 
representations of the data.

PCA is a dimensionality reduction technique to find the change-
of-basis vectors that will change data to a lower dimension that 
represents the most important dimensions to least important 
dimensions as the axes and with each dimension orthogonal to 
each other. There are two main approaches: One way is to use 
eigenvalue decomposition, EVD, of the covariance matrix to get 
the eigenvectors and the other is to use singular value 
decomposition, SVD, of the data matrix to get the eigenvectors 
(Shlens).

ICA is a solution to the Blind Source Separation (BSS) problem. A 
classic example is the Cocktail Party Problem (CPP) which is 
based on the following scenario: suppose there is a cocktail party 
with multiple people having conversation. If there are multiple 
microphones placed around the room, the microphones will pick 
up a time series signal that is an amalgamation of the difference 
speakers (or source signals) which themselves vary based on the 
distance of the speakers to the microphones. If these are the time 
signals:

We can represent the the mixed result and source signals as 
column vectors and the a terms as a mixing matrix, the previous 
equations can be represented by the following:

          x = As
The goal of ICA is then to find a demixing matrix, the inverse of A, 
to recover s. An important note to make is that the sources are 
assumed to be independent and at most only one source is 
Gaussian. That is due to the fact that the joint density of gaussian 
sources would be symmetric and will not include any information 
about the A mixing matrix (Hyvärinen).  

Goals

The initial goals of our project for this summer was to 
compare the floating bodies of different types of 
distributions including heavy-tailed Cauchy-skewed 
distributions, look at the effectiveness of the floating body 
for PCA, ICA, and potentially other algorithms, and 
parallelizing code written in the Julia programming 
language.

Methods

We used the cocktail party dataset from the Ravel Corpora 
\cite{Alameda-Pineda et. al.). We made various different 
sizes of the data to make it quicker to run and test on the 
computers (sizes of 10,100,1000,10000,100000,etc.) and 
reduced the dimensions from 4 (4 columns) to 2 (2 
columns). We also generated random data from a Cauchy 
distribution and added it to the dataset to skew it. Then, 
we generated a square mixing matrix A by generating 
random column vectors from a Gaussian distribution which 
all have a unit length of 1 and multiplied it with my sample 
matrix to generate the resultant matrix x.

Next, we identify what points are inside and outside the 
polar body of the original data. From there, we also had a 
function that we used to generate points on the boundary 
of the polar body for data visualization.

In order to generate the primal body, we first generate 
random samples of points within the polar body. After that, 
we generate the supremum of the points within the polar 
body for every direction. By inverting the supremum, we 
get the boundary of the primal boundary.
After finding the primal body, we then applied to the PCA 
and ICA algorithms in different ways. For ICA, we used the 
fastICA algorithm using the pow3 contrast function (g 
function is x^3). And for PCA, we found the eigenvectors 
of the covariance matrix, from data within the floating body 
and uniform data from the floating body, and multiplied 
them with the x resultant matrix.

Fig 1. This is what the resultant matrix x looked like. Fig 2. Data inside floating body

A convex body is any body where if a line segment is 
drawn between any points within the body, the line 
segment itself will also be in the body.

Definition. If we let K be a convex body in  and δ ≥ 0, the ℝ
floating body is the intersection of halfspaces whose 
hyperplanes cut off a set of volume δ of K. The floating 
body exists for a convex set as long as δ > vol

d
 (K)/2. 

Otherwise the convex floating body would be empty (Nagy 
et. al).

Fig 3. Uniform data from floating body Fig 4. All 3 of the previous figures superimposed
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