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Mixed Auto-Regressive Moving Average Model —
ARMA(p , q)

ARMA Model consists of two closely related

polynomials used for understanding and perhaps
predicting future values in a series.

Before considering how the models may be
combined they must be examined separately

Auto-Re?ression

p l q
X = Z GiXe—i + & + Z O
i=1 lr:=1

|
|

Moving Average




AR Model (AR(p)) perspective

Predicts future behavior based on the correlation of past values and the values
that succeed them.

p
Xt =C +Z¢iXt_i +£t
=1

Specific lagged values of x, are used as predictor variables. Lags are where
results from one time period affect following periods



Variables at time (t) & order (i)

Xt:

p
C+ Z D Xe—i
i=1

+ &

» Current time step is dependent on previous time steps

>



Order of AR model

Xt =C +Z¢iXt_i +£t

=1

The number of immediately preceding values in the series that are used to
predict the value at the present time

Determining this order may be done by plotting a partial autocorrelation
function of data.

At lag k, this is the correlation between series values that are k intervals
apart, accounting for the values of the intervals between.



Error (White Noise)

P
Xp=¢ +Z GiXe—i &
i=1
»Randomly Determined (Stochastic) D:_
» Characterized by independent normal ")
random variables sampled by Gaussian 02|

Distribution (mean = 0)




MA Model (MA(Q)) perspective

The error of any period, t, is linearly dependent on previous errors.

q
Xp = Z O;€r—
i=1

Fitting the MA estimates is more complicated than it is in autoregressive
models (AR models), because the lagged error terms are not
observable.



Variables at time (t) and order (i)

X

I
1
=

» This model’s parameter accounts for the weights applied to prior values in
the time series.

» Errors for previous periods (Residuals)



Order of MA Model

X = Z ORI
i=1

Determining the order of this model may be done by plotting an
autocorrelation function of data.

At lag k, this is the correlation between series values that are k intervals
apart



ARMA in Traffic Prediction

» ARMA Model is atheoretic and used for prediction of
random processes.

» Traffic is difficult to model & predict because it lacks
iInherent symmetry

» This model has not been used in traffic prediction



Methodology & Tools

» MATLAB — Econometrics Toolbox
- Econometric Modeler
- Correlation functions

» Box-Jenkins Method for ARMA prediction

» Compare experimental results to real-life values



Data Overview
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Traffic Congestion Levels for Kennedy

Expressway
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Box Jenkins Method for ARMA Prediction
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Time series is non-stationary

» Autocorrelation pattern signifies a trend.

»Dependence on time

Traffic Congestion Levels for Kennedy Expressway (Inbound)

Traffic Congestion Level
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Autecorrelation Function for Inbound Traffic Congestion Levels

»

0.8 |

06 |

04 F

02F .

Aulocorrelation

U L

£.2F .

0.4 .

0.6

1] 2 4 6 a 10 12 14 16 18
Lag

20

0.8 1
06|
04

o2 | -

Autocorrelation Function for Outbound Traffic Congestion Levels
1

Autocorrelation

0 T L]

0.2 .

0.4 F

0.6

1] 2 4 ] ] 10 12 14 16 18



Box Jenkins Method for ARMA Prediction
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ARMA become AR(I)MA
» Notation - ARIMA(p,d,q)

» () — Integrate

Eliminated non-stationarity by a process known as
“differencing”

» Differencing removes random trends by correlating
raw values with a gradient



Non-Stationary to Stationary Time Series
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Box Jenkins Method for ARMA Prediction
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Sample Autocorrelation

Correlograms

Inbound Autocorrelation Function Inbound Partial Autocorrelation
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» 95% Confidence interval

» Significant correlations at the first couple of lags, followed by correlations that
are not significant.

» 3 significant correlations



ARIMA (3,1,3)



Box Jenkins Method for ARMA Prediction
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Inbound TCL Model Estimation

Model Fit
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Parameter|Value Standard Error |t Statistic P-Value
Constant |-0.0010351(0.0071638 -0.14448 0.88512
AR{1} -0.081047 | 0.34733 -0.26213 0.79322
AR{Z: 0.29037 0.21629 1.8048 0.071104
AR{3} -0.51859 | 0.22857 -2.2688 | 0.023281
MA{1} 0.26441 0.34906 0.75747 0.44877
MALZ} 0168467 | 0.2633 -0.56145 0.57449
MA{Z} 0.53425 0.19214 2.7805 0.0054269
Variance |0.0038219 |0.000255% 14,9353 1.9427e-50




Outbound TCL Model Estimation

Model Fit
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Constant [0.0010851 |0.011272 0.09626 |0.92331
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AR{2} -0.43793  |0.20949 -2.0905 |0.036577
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MA{2} 0.72256 |0.20824 3.4659  |0.00052071
MA{3} 00072267 (0.261796 0.027587|0.97799
Variance |[0.004298 |0.00032993 13.0253 |8.7895e-39
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Box Jenkins Method for ARMA Prediction
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Future Work

» Model Forecasting
Forecast function

» Alternate method for determining p & g orders

Akaike Information Criterion (AIC)- It associates the
number of model parameters and the goodness of fit. It also
associates a penalty factor to avoid over-fitting



Reflection:

What did | learn this summer?

MATLAB
Statistical Analysis
Wallops Flight Facility
Planning
Organization
Volleyball
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