

PREDICTING TRAFFIC CONGESTION WITH THE AUTO-REGRESSIVE MOVING AVERAGE (ARMA) MODEL

A Presentation by Stephanie Boggs Home University- Jackson State University Program Site- Salisbury University August 5th, 2019

Explore Emerging Computing In Science and Engineering REU

Mixed Auto-Regressive Moving Average Model – ARMA(p, q)

ARMA Model consists of two closely related polynomials used for understanding and perhaps predicting future values in a series.

Before considering how the models may be combined they must be examined separately

AR Model (AR(p)) perspective

Predicts future behavior based on the correlation of past values and the values that succeed them.

$$X_t = c + \sum_{i=1}^p \phi_i X_{t-i} + \varepsilon_t$$

Specific lagged values of x_t are used as predictor variables. Lags are where results from one time period affect following periods

Variables at time (t) & order (i)

$$X_{t} = c + \sum_{i=1}^{p} \phi_{i} X_{t-i} + \varepsilon_{t}$$

- Current time step is dependent on previous time steps
- ➤ Model parameter

Order of AR model

$$X_t = c + \sum_{i=1}^{p} \phi_i X_{t-i} + \varepsilon_t$$

The number of immediately preceding values in the series that are used to predict the value at the present time

Determining this order may be done by plotting a **partial autocorrelation** function of data.

At lag k, this is the correlation between series values that are k intervals apart, accounting for the values of the intervals between.

Error (White Noise)

$$X_t = c + \sum_{i=1}^{p} \phi_i X_{t-i} + \varepsilon_t$$

- ➤ Randomly Determined (Stochastic)
- ➤ Characterized by independent normal random variables sampled by Gaussian Distribution (mean = 0)

MA Model (MA(q)) perspective

The error of any period, t, is linearly dependent on previous errors.

$$X_t = \sum_{i=1}^q \Theta_i \varepsilon_{t-i}$$

Fitting the MA estimates is more complicated than it is in autoregressive models (AR models), because the lagged error terms are not observable.

Variables at time (t) and order (i)

$$X_t = \sum_{i=1}^q \Theta_i \varepsilon_{t-i}$$

- ➤ This model's parameter accounts for the weights applied to prior values in the time series.
- Errors for previous periods (Residuals)

Order of MA Model

$$X_t = \sum_{i=1}^{q} \Theta_i \varepsilon_{t-i}$$

Determining the order of this model may be done by plotting an **autocorrelation** function of data.

 \triangleright At lag k, this is the correlation between series values that are k intervals apart

ARMA in Traffic Prediction

- ARMA Model is atheoretic and used for prediction of random processes.
- Traffic is difficult to model & predict because it lacks inherent symmetry
- This model has not been used in traffic prediction

Methodology & Tools

- MATLAB Econometrics Toolbox
 - Econometric Modeler
 - Correlation functions

- Box-Jenkins Method for ARMA prediction
- Compare experimental results to real-life values

Data Overview

Chicago, Illinois : Kennedy Expressway

O'Hare Int'l Airport ← → I:290 J.B. Interchange

Approximately: 18 miles

Speed Limit: 70 mph

Observed Variable:

Traffic Congestion Levels:

$$TCL = (V_{max} - V_i)/V_{max}$$

Traffic Congestion Levels for Kennedy Expressway

Time series is non-stationary

- > Autocorrelation pattern signifies a trend.
- ➤ Dependence on time

ARMA become AR(I)MA

- Notation ARIMA(p,d,q)
- (I) Integrate
 Eliminated non-stationarity by a process known as "differencing"
- Differencing removes random trends by correlating raw values with a gradient

Non-Stationary to Stationary Time Series

Correlograms

Inbound Autocorrelation Function

Inbound Partial Autocorrelation

- > 95% Confidence interval
- ➤ Significant correlations at the first couple of lags, followed by correlations that are not significant.
- > 3 significant correlations

ARIMA (3,1,3)

Inbound TCL Model Estimation

Parameter	Value	Standard Error	t Statistic	P-Value
Constant	-0.0010351	0.0071638	-0.14448	0.88512
AR{1}	-0.091047	0.34733	-0.26213	0.79322
AR{2}	0.39037	0.21629	1.8048	0.071104
AR{3}	-0.51859	0.22857	-2.2688	0.023281
MA{1}	0.26441	0.34906	0.75747	0.44877
MA{2}	-0.16467	0.2933	-0.56145	0.57449
MA{3}	0.53425	0.19214	2.7805	0.0054269
Variance	0.0038219	0.0002559	14.9353	1.9427e-50

Outbound TCL Model Estimation

Parameter	Value	Standard Error	t Statistic	P-Value
Constant	0.0010851	0.011272	0.09626	0.92331
AR{1}	-0.70176	0.25896	-2.7099	0.006731
AR{2}	-0.43793	0.20949	-2.0905	0.036577
AR{3}	0.25024	0.24757	1.0108	0.31213
MA{1}	0.88162	0.2619	3.3663	0.00076193
MA{2}	0.72256	0.20824	3.4699	0.00052071
MA{3}	0.0072267	0.26196	0.027587	0.97799
Variance	0.004298	0.00032998	13.0253	8.7895e-39

Future Work

- Model Forecasting Forecast function
- Alternate method for determining p & q orders

Akaike Information Criterion (AIC)- It associates the number of model parameters and the goodness of fit. It also associates a penalty factor to avoid over-fitting

Reflection:

What did I learn this summer?

MATLAB
Statistical Analysis
Wallops Flight Facility
Planning
Organization
Volleyball

References

- Kumar, R., & Soodan, B. S. (2019). Transient Analysis of a Single-Server Queuing System with Correlated Inputs and Reneging. Reliability: Theory & Applications, 14(1), 102–106. Retrieved from http://ecnhts-proxy.jsums.edu:2069/login.aspx?direct=true&db=aph&AN=1367036
 07&site=ehost-live
- The Agency for Science, Technology and Research (A*STAR). (2016, June 17). A mathematical analysis of urban traffic models clarifies dispute over which approach is best. ScienceDaily. Retrieved June 13, 2019 from www.sciencedaily.com/releases/2016/06/160617114007.htm
- ▶ Freud, R.J., Wilson, W.J. ((1998) Regression Analysis: Statistical Modeling of a Response Variable. San Diego, CA: Academic Press
- The Box-Jenkins Method. Chapter 470. NCSS Statistical Software. https://ncss-wpengine.netdna-ssl.com/wpcontent/themes/ncss/pdf/Procedures/NCSS/The Box-Jenkins Method.pdf

Questions?

