
Detecting Network Intrusion Anomalies through
Egonet-based Data Mining with Apache Spark

Nathan Paik, Se Ho Kwak; Dr. Enyue Lu
Department of Computer Science, Pomona College; Department of Computer Science, Salisbury University

Abstract

Network intrusions often contain dangerous breaches to
network security systems and their data. We design an anomaly
detection system to identify network intrusions. Our proposed
detection method is inspired by the use of egonets in the
Oddball Algorithm but differs by the extracted features and the
anomaly classification procedure. The detection process follows
the generalized design: create a k-nearest-neighbors graph from
a network dataset; extract each node’s egonet’s edge weights,
number of edges, and total eigenvector centrality sum; compare
each node’s egonet’s features through pairwise comparisons; and
define a median “truth” line from the comparison and label
nodes as anomalous based on their distance from the line. We
have achieved an anomaly detection accuracy score of up to
92.9% with the eigenvector centrality score vs. edge weight
feature comparison. We parallelize our algorithm by
implementing Resilient Distributed Datasets in Apache Spark.

Anomaly Score and Accuracy

Given each feature of the egonets, we paired features and
analyzed them with each other. We performed three paired
analyses per sample: total edge weights vs. total number of
edges, total eigenvector centrality measure vs. total weight, and
total eigenvector centrality measure vs. total number of edges.

We partitioned all the vertices into equal parts based off one
of the measures from our pairwise comparison and used the
central point of each partition as our “median” values for our
ground truth line. We took the vertices that were farthest from
the median truth line and labeled those as anomalies. Our
accuracy is determined by the following equation where TP is
the number of true positives, FP is the number of false positives,
TN is the number of true negatives, and FN is the number of
false negatives. The accuracy is represented by the following
equation:

accuracy = TP + TN
TP + TN + FP + FN

Egonet Feature Extraction

From the kNN graph, we calculated each vertex’s
eigenvector centrality measure. We organized each node into
their respective egonets, which are the collection of the node’s
immediate neighboring connections and all the edge connections
amongst the neighboring nodes. We extracted different features
to analyze for each egonet, which included each egonet’s total
number of edges, total sum of edge weights, and total
eigenvector centrality measure.

Conclusions and Future Work

From the results the table above, we achieve up to 92.9%
accuracy with our anomaly detection algorithm. Our best
approach for anomaly detection accuracy is to apply the
eigenvector centrality vs. total edge weight comparison. The
graph to the left shows how attack types are separated from
normal types after running our pairwise comparison. A possible
future work includes improving our algorithm through
supervised machine learning by enhancing our anomaly
classifying technique to be more sophisticated rather than just
taking the farthest points from the median “ground truth” line.
Another possible work would be finding an algorithm to
optimize the k-value for our kNN graphs. We successfully
parallelized the detection process on a local cluster and the
cluster in the high-performance computing laboratory at
Salisbury University. Our runtimes for our detection algorithm
on the 5,000-node sample and 10,000-node sample are 2.2
minutes and 20 minutes respectively using a 6-node cluster. We
are in the process of optimizing the runtime and improving the
efficiency on our GPU enabled clusters.

Acknowledgements

The work is funded by NSF CCF-1757017 under Research
Experiences for Undergraduates (REU) Program. Nathan Paik
and Se Ho Kwak did their research as REU students at
Salisbury University in the summer of 2021.

Comparison 
Type

Eigenvector 
Centrality 
vs. Edge 
Weight

Eigenvector 
Centrality 
vs. Edge 
Count

Edge Weight 
vs. Edge 
Count

1,000 nodes
k=40

92.2% 90.6% 86.2%

5,000 nodes
k=150

92.24% 87.44% 84.88%

10,000 nodes
k=300

92.9% 85.76% 87.62%

Graph Creation

With the NSL-KDD dataset, each edge connecting two
vertices represents the similarity measure between the two
vertices. This similarity measure is based on two functions. First,
the Euclidean distance is calculated between the two vertices,
and then, the radial basis function is applied using the Euclidean
distance as the vector distance to give the complete similarity
measure.

wi,j=
1

exp( vi — vj
2
)

This creates a complete graph of our dataset with each node
connected to all other nodes with edges based on similarity.
Therefore, to reduce the size of the graph to work with, we
implemented a k-nearest-neighbors graph (kNN graph). Each
sample takes a different k-value according to how many total
nodes are in the graph.

Network Data

We utilized different sizes of the NSL-KDD dataset network
dataset (1,000 samples, 5,000 samples, 10,000 samples) to work
with. We also limit each connection record to contain 18
attributes that include five basic attributes and thirteen
secondary attributes.


