
1

GPU Accelerated Ultrasonic Tomography Using
Propagation and Backpropagation Method

Pedro D. Bello¹, Yuanwei Jin², and Enyue Lu³
¹Department of Electrical and Computer Engineering, Florida International University, FL

²Department of Engineering and Aviation Sciences, University of Maryland Eastern Shore, MD
³Department of Mathematics and Computer Science, Salisbury University, MD

Abstract—This paper develops implementation strategy and
method to accelerate the propagation and backpropagation (PBP)
tomographic imaging algorithm using Graphic Processing Units
(GPUs). The Compute Unified Device Architecture (CUDA)
programming model is used to develop our parallelized algorithm
since the CUDA model allows the user to interact with the GPU
resources more efficiently than traditional Shader methods. The
results show an improvement of more than 80x when compared
to the C/C++ version of the algorithm, and 515x when compared
to the MATLAB version while achieving high quality imaging for
both cases. We test different CUDA kernel configurations in order
to measure changes in the processing-time of our algorithm. By
examining the acceleration rate and the image quality, we develop
an optimal kernel configuration that maximizes the throughput
of CUDA implementation for the PBP method.

Index Terms—Medical Imaging, Ultrasonic Tomography, GPU,
CUDA, Parallel Computing

I. INTRODUCTION

GRAPHIC Processing Units (GPUs) are computation-
dedicated hardware that can significantly accelerate ex-

ecution of algorithms for different applications. In 2007,
NVIDIA released their Computed Unified Device Architecture
(CUDA) programming model, which allows C/C++ users to
use the GPU resources in a simpler and friendly manner. This
new programming model is being used, nowadays, for a wide
range of applications such as medical imaging, online gaming,
etc. due to its flexibility and high performance.

1.1 Compute Unified Device Architecture CUDA

The CUDA programming model enables a channel that
connects the CPU with the GPU. Functions that are needed
to run in parallel are launched from the CPU and executed
on the GPU. If data is stored on the CPU, but needs to be
processed on the GPU, memory copies and allocation must
be programmed. After the data is stored on the GPU, kernel
functions are called to process the data in parallel.

The kernel functions assign threads to process the same in-
structions in different parts of the data. Algorithms that follow
this pattern are called Single Instruction Multiple Data (SIMD)
algorithms. To follow the SIMD implementation, the CUDA

The work is supported in part by the National Science Foundation under
grant no. CCF-1156509 and CMMI-1126008, and the U.S. Army Research
Laboratory, the Office of Naval Research, and the Army Research Office under
grant no. W911NF-11-1-0160.

P. Bello did his work as a REU (Research Experience for Undergraduate)
student at Salisbury Univeristy in Summer 2012.

programming model needs to establish a kernel configuration
for a specific application. Kernel configuration refers to how
threads are grouped into blocks and how blocks are organized
to cover a whole grid of data at each execution run in a
parallel mode. The strategy to determine the size of blocks (i.e.
dimensionality) and the format of block organization impacts
greatly the computation time of a CUDA application. Our goal
is to find the kernel configuration that achieves the fastest
implementation for our imaging application.

1.2 Previous Work on Medical Imaging using GPUs

Much research in the medical imaging field using GPUs has
been done for many years. In [1], Copeland et al. used 2D
images, obtained by X-ray projections, to reconstruct 3D+T
cerebral angiography information. The total processing time
of their algorithm was about six hours. Later on in [2], his
team developed a new version of the algorithm that processed
the data in parallel using GPUs. According to their results,
improvements of 12x were achieved for a “naive” approach
using CUDA. Then, using the sparsity of the problem, and
by adapting the memory accessing of the information they
were able to achieve 246x improvement. Wen-mei et al. in
[3], implemented a magnetic resonance image reconstruction
algorithm that took advantage of the GPU resources. They
started by implementing a “naive” algorithm that was slow,
and then they exploited the memory-accessing optimizations
that the CUDA programing model offers. At the end, their
results showed improvements of 22.5x.

In [4], we developed a new iterative image reconstruc-
tion algorithm called PBP method. This method utilizes the
multiple-input multiple-output (MIMO) technique to achieve
faster imaging reconstruction. In this paper, we develop a GPU
implementation that exploits the parallelism structure of the
algorithm to further accelerate image reconstruction.

II. GPU ACCELERATED PBP ALGORITHM

2.1 PBP Imaging Algorithm

The process of reconstructing images from ultrasonic infor-
mation starts with the following acoustical wave equation:

∂2

∂t2
u (x, t) = c2 (x)4u (x, t) +

Jm∑
l=1

s (x, sl , t) (1)

where the acoustic field u (x, t) ∈ Ω×[0, T ]. Jm is the number
of simultaneous excitation sources. c (x) = c0

√
1 + f (x) is



2

the propagation speed of the acoustic wave in the medium.
f (x) is the acoustic potential function that needs to be
reconstructed. The imaging problem described by (1) can be
formulated as an inverse problem:

Rj (f (x)) = gj (2)

where gj is the measurement data collected at the acoustic
sensors, and Rj (·) is the non-linear operator governed by (1).
The solution of (2) can be solved using the PBP method [4],
which takes the form of

fk+1 (x) = fk (x) + R′j
(
fk (x)

)∗ [
gj −Rj

(
fk (x)

)]
(3)

where k = 0, 1, 2, · · · is the iteration timestep.

2.2 GPU Acceleration

We recognize that the iteration equation given by (3) can be
executed in parallel at each spatial grid point of the imaging
field. However, it cannot be programmed to calculate the f (x)
value at different time stages in parallel. Therefore, the final
CUDA implementation algorithm becomes a combination of
parallel and sequential tasks.

For the CUDA implementation of the tomographic imaging
algorithm, image values at each grid point (i.e. pixels) are
calculated in parallel. Each grid point is processed by a
thread. Threads are then organized into blocks by CUDA.
Although, it is believed that different kernel configurations
impact the acceleration performance [5], to the best of our
knowledge, there is very limited research regarding how block
dimensionality affects the performance of CUDA applications,
particularly for imaging algorithms. In this work, we conduct
experimental tests on GPU of the PBP imaging algorithm and
identify its optimal kernel configuration.

Our tests aim to determine which block configuration works
better for our application by testing all the possible options.
We modify the kernels of our program, making sure that the
quality of the reconstructed image remains comparable. We
measure the execution time of each test. Finally, we examine
all the configuration results and analyze how timings change
based on these configurations.

2.3 Imaging Results Implemented by GPU

The GPU used for our testing is a GeForce GTX 580
which has 512 CUDA cores and 1.6 GB RAM DDR5. The
CPU is a quad-core, desktop computer with a Xeon E5607
microprocessor running at 2.6 GHz and 8.0 GB RAM.

We benchmark our results using three different platforms.
The original PBP algorithm was implemented in MATLAB
[4]. Since the CUDA programming model is based on Mi-
crosoft Visual Studio C/C++, we propose to use both C/C++
and CUDA to test the performance improvement. Using these
three programing models we test different behaviors that lead
to different processing times with comparable image quality.
Exact timings can be found in Table I.

Next, we implement our experimental tests in order to
measure computation timings for different kernel configura-
tions. We choose to test all the possible options so that our
experimental results would be conclusive for the GPU that we
use. According to our results, blocks of size 16 by 8 maximize

Table I
TIME MEASUREMENTS (HOURS:MINUTES:SECONDS)

the throughput of our application. Furthermore, kernels of 128
threads per block are faster than any other size for most of
the cases. This can be accounted to the fact that, although
it is possible to saturate the GPU resources using 256 or 512
threads per block, it is more efficient to process more blocks by
each Streaming Multiprocessor (SM). The ground truth image
and the reconstructed image implemented in GPU are shown
in Fig. 1. Fig. 1a depicts a circular object to be imaged. The
object is surrounded by a total of 640 acoustic sensors. Each
sensor can transmit and receive acoustic wave signals. From
the measured sensor data, the object image (see Fig. 1b) is
reconstructed by the iteration equation given in (3).

(a) Ground truth image (b) Reconstructed image

Figure 1. Reconstructed image by PBP method using GPU

III. CONCLUSIONS

We developed a fast algorithm that utilizes GPU resources
to solve the imaging problem by MIMO-PBP ultrasonic to-
mography. The initial algorithm took 6 hours to complete,
and our GPU implementation reduced the processing time
to 43 seconds, thus achieving improvements of 515x faster
than the initial MATLAB implementation, and 80x faster
than the C/C++ implementation. Furthermore, we proposed a
kernel configuration that maximizes the throughput of medical
imaging algorithms using CUDA. This configuration, and the
procedure we developed that leads to it, can be extended to
other CUDA applications. By accelerating the algorithm using
GPUs, tests that were not possible to perform before due to
the long execution times are now possible.

REFERENCES

[1] A. Copelan, R. Mangoubi, M. Desai, S. Miter, and A. Malek, “Spatio-
Temporal Data Fusion for 3D+T Image Reconstruction in Cerebral
Angiography,” IEEE Transactions on Medical Imaging, vol. 29, pp. 1238
– 1251, June 2012.

[2] Y. Xu, R. Mangoubi, M. Desai, A. Copelan, S. Mitter, and A. Malek,
“GPU-based Real-time Implementation of 3D+T Image Reconstruction
with Application to Cerebral Angiography,” in IEEE International Sym-
posium on Biomedical Imaging, 2011, pp. 401 – 406.

[3] W. Hwu, D. Nandakumar, J. Haldar, and I. Atkinson, “Accelarating MR
Image Reconstruction on GPUs,” in IEEE International Symposium on
Biomedical Imaging, 2009, pp. 1283 – 1286.

[4] C. Dong, Y. Jin, M. Farrar, and K. Priddy, “A study of multi-static
ultrasonic tomography using propagation and backpropagation method,”
in Proccedings of SPIE, vol. 8051, 2011, pp. 805 106–805 106–13.

[5] D. B. Kirk and W. W. Hwu, Programming Massively Parallel Processors:
A Hands-On Approach. Morgan Kaufmann, 2010.


	I Introduction
	II GPU Accelerated PBP Algorithm
	III Conclusions
	References

