
GPU Accelerated Ultrasonic Tomography Using Propagation and Backpropagation Method
Pedro D. Bello1, Yuanwei Jin2, and Enyue Lu3

1Department of Electrical and Computer Engineering, Florida International University, FL
2Department of Engineering and Aviation Sciences, University of Maryland Eastern Shore, MD

3Department of Mathematics and Computer Science, Salisbury University, MD

 Graphic Processing Units (GPUs) are computation-dedicated
hardware that can significantly accelerate execution of algorithms for
different applications. In 2007, NVIDIA released their Computed
Unified Device Architecture (CUDA) programming model, which
allows C/C++ users to use the GPU resources in a simpler and friendly
manner. This new programming model is being used, nowadays, for a
wide range of applications such as medical imaging, online gaming,
etc. due to its flexibility and high performance.

Introduction

Problem Description
 Ultrasonic Tomography is widely used for medical imaging
applications due to its great features. However, typical tomographic
imaging algorithms are very slow due to the amount of computations
that are required. Software efficient techniques have been proposed in
order to improve the performance. In this poster, we propose a
hardware technique that utilizes GPU resources to speed up the
reconstruction process.

Conclusion
 We developed a faster hardware implementation algorithm that
utilizes GPU resources to accelerate the imaging problem by
propagation and backpropagation ultrasonic tomography. The initial
algorithm took 6 hours to finish, and we managed to reduce the
processing time to 43 seconds, thus achieving improvements of 515x
faster than the initial MATLAB implementation, and 80x faster than
the C/C++ implementation. Furthermore, we proposed a kernel
configuration that maximizes the throughput of the PBP imaging
algorithms using CUDA.

Reconstruction Model

𝜕2

𝜕𝑡2
𝑢 𝐱, 𝑡 = 𝑐2 𝐱 ∆𝑢 𝐱, 𝑡 + 𝑠 𝐱, 𝐬𝑙 , 𝑡

𝐽𝑚

𝑙=1

 The process of reconstructing images from ultrasonic information
starts with the acoustical wave equation:

where 𝑢 𝐱, 𝑡 ∈ Ω × 0, 𝑇 . And 𝐽𝑚 is the number of simultaneous

exitation sources. 𝑐 𝐱 = 𝑐0 1 + 𝑓 𝐱 is the propagation speed of the

acoustic wave in the medium. 𝑓 𝐱 is the acoustic potential function
that needs to be reconstructed.
 The imaging problem described by 1 can be formulated as an
inverse problem:

Results
 We benchmark our results using three different platforms. The
original PBP algorithm was implemented in MATLAB. Since the CUDA
programming model is based on C/C++, we propose to use both C/C++
and CUDA to test the performance improvement. Using these three
programing models we test different imaging scenarios that lead to
different processing times with comparable image quality. Execution
times and performance improvement can be seen in Table 2 and 3,
respectively. Final imaging results can be seen in Fig. 4.

Table 3. Performance tabulation

Table 2. Processing times

Figure 1. Acoustic wave propagation simulation
Table 1. Kernel timings for different

block sizes

Acknowledgments
 The work is supported in part by the National Science Foundation
under grant no. CCF- 1156509 and CMMI-1126008, and the U.S. Army
Research Laboratory, the Office of Naval Research, and the Army
Research Office under grant no. W911NF-11-1-0160.

1

𝑅𝑗 𝑓 = 𝑔𝑗 2

 where 𝑔𝑗 is the measurement data collected at the acoustic sensors,

and the 𝑅𝑗 ∙ is the non-linear operator governed by 1 . The solution

of 2 can be solved using the PBP method which takes the form of

𝑓𝑘+1 𝐱 = 𝑓𝑘 𝐱 + 𝑅𝑗
′ 𝑓𝑘 𝐱

∗
𝑔𝑗 − 𝑅𝑗 𝑓

𝑘 𝐱 3

where 𝑘 = 0,1,2,⋯ is the iteration time-step.

 For CUDA implementation of the tomographic imaging algorithm,
image values at each grid point (i.e. pixels) are calculated in parallel
(Fig. 2). Each grid point is processed by a thread. Threads are then
organized into blocks by CUDA. Although, it is believed that different
kernel configurations impact the acceleration performance, to the best
of our knowledge, there is very limited research regarding how block
dimensionality affects the performance of CUDA applications,
particularly for imaging algorithms. In this work, we conduct
experimental tests on GPU of the PBP imaging algorithm and identify
its optimal kernel configuration.

 Our tests consist of
finding which kernel
configuration works
better for our
application by testing
all the possible
options. We modify
 the kernels of our
program (Fig. 3),
making sure that the
quality of the
reconstructed image
remains comparable.
We measure the
execution time of
each test. Finally, we
examine all the
configuration results
and analyze how
timings change
based on these
configurations (Table 1).

Figure 3. Kernel configurations

(a) Ground truth
image

(b) Reconstruction
after first iteration

(c) Final
reconstructed image

Figure 4. Reconstructed image by the PBP method using GPU

GPU Acceleration

Experimental Setup

Figure 2. Image calculation process

