

Analyzing Patterns in Large-Scale Graphs Using MapReduce in Hadoop

Joshua Schultz1 (Undergraduate), Jonathan Vieyra2 (Undergraduate), Enyue Lu1 (Faculty Mentor)
1Dept. of Math. & Computer Science, Salisbury University, Salisbury, USA

2Dept. of Computer Science, California State Polytechnic University, Pomona, USA

Analyzing patterns in large-scale graphs, such as social

networks (e.g. Facebook, Linkedin, Twitter) has many

applications including community identification, blog analysis,

intrusion and spamming detections. Currently, it is impossible

to process information in large–scale graphs with millions even

billions of edges with a single computer. In this project, we take

advantage of MapReduce, a programming model for processing

large datasets, to detect important graph patterns using open

source Hadoop on Amazon EC2. The aim of this paper is to

show how MapReduce cloud computing with the application of

graph pattern detection scales on real world data.

• Implement MapReduce graph algorithms to enumerate

important patterns including

• Triangles: three-vertex complete graphs

• Rectangles: four-vertex cycles

• K-trusses: every edge is in K-2 triangles

• Components: there is a path between any pair of vertices

• Barycentric clusters: highly connected subgraphs

• Analyze the performance of MapReduce graph algorithms

• Create a visualization algorithm to visualize the detected

graph patterns

A synthetic graph G with 100 vertices and 398 edges

Enumerating Triangles on graph G

Enumerating 4-truss on G

Data processed on a cluster was ran on Amazons Elastic MapReduce

“small” computers. Each computer was outfitted with 1.7 GB of

memory 160 GB of storage and the equivalent of a 1.7GHz Xeon

processor. We used different datasets ranging from 1 MB to 1GB

including wiki-Vote (7,115 Vertices, 103,689 Edges, 1MB), soc-

Slashdot0811 (77,360 Vertices, 905,468 Edges, 10MB), and soc-

LiveJournal1 (4,847,571 Vertices, 68,993,773 Edges, 1GB) from

Snap Stanford.

Enumerating Rectangles on G
As shown in the figure above, triangle and rectangle

enumerating algorithms scale well when datasets get larger.

The above figure shows a steady decline in running time as

the number of computers increases for large data (e.g. 1GB).

The above figure indicates that the scalability of the truss

algorithm depends on the number of MapReduce iterations.

This research is funded by National Science Foundation

CCF-1156509 under the Research Experience for

Undergraduates Program. We would like to thank Professor

Randal Burns at Johns Hopkins University for his valuable

inputs on our work.

Motivation

Contributions

Graph Visualization for Detected Patterns Experimental Setting

Experimental Results

MapReduce Programming Model

Acknowledgment

