
Analyzing Patterns in Large-Scale Graphs Using

MapReduce in Hadoop

Joshua Schultz, Undergraduate

Dept. of Math. & Computer Science

Salisbury University

Salisbury, USA

jschultz1@gulls.salisbury.edu

Jonathan Vierya, Undergraduate

Dept. of Computer Science

Cal Poly Pomona

Pomona, USA

2010jonathan@sbcglobal.net

Enyue Lu, Faculty Mentor

Dept. of Math. & Computer Science

Salisbury University

Salisbury, USA

ealu@salisbury.edu

Abstract— Analyzing patterns in large-scale graphs, such as

social networks (e.g. Facebook, Linkedin, Twitter) has many

applications including community identification, blog analysis,

intrusion and spamming detections. Currently, it is impossible

to process information in large-scale graphs with millions even

billions of edges with a single computer. In this paper, we take

advantage of MapReduce, a programming model for

processing large datasets, to detect important graph patterns

using open source Hadoop on Amazon EC2. The aim of this

paper is to show how MapReduce cloud computing with the

application of graph pattern detection scales on real world

data. We implement Cohen’s MapReduce graph algorithms to

enumerate patterns including triangles, rectangles, trusses and

barycentric clusters using real world data taken from Snap

Stanford. In addition, we create a visualization algorithm to

visualize the detected graph patterns. The performance of

MapReduce graph algorithms has been discussed too.

Index Terms—MapReduce, Cloud Computing, Graph

Algorithms, Pattern Detection, Cohesive Components

I. MOTIVATION

Graph models are frequently used in a wide range of
applications to capture the relationships among data entities.
In a graph model, data entities are represented as vertices
while edges represent relationships among the entities. In
order to extract useful information from these relationships,
one effective approach is to analyze special patterns such as
cohesive components concisely from the graph.

Technological advances have increased the volume of
collected data. The corresponding graphs become larger and
more complex, making it impractical to process them on a
single computer. This has stressed a need to develop
methods that recognize patterns and cohesive groups in
large-scale graphs efficiently and effectively [1].

II. MAPREDUCE GRAPH ALGORITHMS

Recently, MapReduce has emerged as a reasonable
solution to processing large data [2]. It also earned a strong
interest to those who want to analyze graphs [1,3]. The
programmer defines a map function which processes the
input data and generates intermediate key/value pairs. The
programmer also defines a reduce function which is applied
to the intermediate key/value pairs to output final key/value
pairs.

Using the open-source Hadoop implementation of the
MapReduce model, programs can be automatically
parallelized and executed on a cluster of machines [4]. The
tasks of partitioning input data, scheduling the map and
reduces tasks across a cluster of machines, handling machine
errors, and managing communication between machines are
transparent to programmers. The machine running the user’s
program, referred to as the master node, partitions input data
into data segments and assigns map tasks to worker nodes.
The map function is run on data segments in parallel
distributed across multiple machines. The master node
assigns reduce tasks to worker nodes which perform the
reduce function on the intermediate map of key/value pairs.
Figure 1 shows the execution of the MapReduce
programming model in a distributed system.

Fig. 1: MapReduce programming model

Cohen has outlined six MapReduce algorithms to analyze

graph patterns [1]. These patterns include triangles,

rectangles, trusses, barycentric clusters, and components.

Some of these patterns such as triangles can be the basis for

analyzing other patterns. A triangle is a three-vertex graph

where every vertex connects to each other. A rectangle is a

four-vertex cycle, which can be found by finding two

triangles without the overlapped edge. A k-truss is a

relaxation of a k-clique. In a k-truss, every edge is in k-2

triangles, while in a k-clique every vertex is connected to

each other. Thus finding trusses can be done by enumerating

triangles. Like trusses, barycentric clusters were proposed to

find highly connected subgraphs. In barycentric clustering,

vertices are given random initial positions that are then

updated by multiplying by a matrix a given number of

times.

III. EXPERIMENTAL RESULTS AND ANALYSIS

We have implemented six MapReduce algorithms to

analyze graph patterns including triangles, rectangles,

trusses, barycentric clusters, and components. The input

data for these algorithms are from Snap Stanford, which

contains different types and sizes of real world datasets [5].

In Snap Stanford, the data is formatted as raw edges which

fit nicely into Cohen’s proposed algorithms. We used three

different datasets ranging from 1 MB to 1GB, wiki-Vote

(7,115 Vertices, 103,689 Edges, 1MB), soc-Slashdot0811

(77,360 Vertices, 905,468 Edges, 10MB), and soc-

LiveJournal1 (4,847,571 Vertices, 68,993,773 Edges, 1GB).

All of the data processed was run on Amazons Elastic

MapReduce “small” computers. Each of them was outfitted

with 1.7 GB of memory 160 GB of storage and the

equivalent of a 1.7GHz Xeon processor [6]. We show and

discuss some experimental results below.

A. Enumerating Triangles and Rectangles

The MapReduce algorithms for enumerating triangles

and rectangles scale well when datasets get large as shown

in Figure 2. They were successfully run across an array of

cluster sizes from one computer to twenty. We analyzed

running times on the 1GB dataset and found a steady

decline in the curve as the number of computer increased as

shown in Figure 3. There are many other triangle counting

algorithms that are very fast. Some of which are less than

100% accurate and do not actually enumerate every triangle

[7]. We felt Cohen’s MapReduce triangle enumerating

algortihm offered an advantage over the others: it counts

every triangle accurately and allows the data to be analyzed

on each individual triangle. In addition, it uses raw edges

instead of a vertex adjacent matrix which are not efficent for

sparse graphs with millions of vertices.

B. Finding Trusses

Finding trusses is an excellent way to find highly

connected subgraphs, and further analysis is required to see

how it scales on the cloud. Figure 4 shows different run

times as k increaeses. For any dataset, the fastest run time

was when k=3. This is obvious because the algorithm

enumerates triangles once. However the running time of the

program explodes when k is greater than three. The reason

is that even if one edge is dropped the entire program needs

to be re-run as the finding trusses algorithm states.

C. Barycentric Clustering

We found that the barycentric algorithm does not have

consistent outputs. By increasing the cut-off length for

edges we would get the desired results on very small graphs

(less than fourteen vertices). However, the algorithm lost the

consistency as we increased the graph size. For the purpose

of finding clusters the algorithm did well, but was not

always consistent on different datasets. We feel that further

work is needed to fully consider the usefulness of the

algorithm.

IV. ACKNOWLEDGMENT

The work is funded by NSF CCF-1156509 under
Research Experiences for Undergraduates Program. We
would like to thanks Professor Randal Burns at Johns
Hopkins University for his valuable inputs on our work.

REFERENCES

[1] J. D. Cohen, “Graph Twiddling in a MapReduce World,”

Computing in Science & Engineering, vol. 11, no. 4, pp. 29-41,

July-Aug. 2009.

[2] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing

on large clusters,” Communications of the ACM, vol.51, no.1, Jan.

2008, pp. 107-113.

[3] J. Lin, and M. Schatz, “Design Patterns for Efficient Graph

Algorithms in MapReduce,” in Proc. Eighth Workshop on Mining

and Learning with Graphs, 2010, pp. 78-85.

[4] Hadoop, http://hadoop.apache.org.

[5] SNAP: Stanford Network Analysis Project, http://snap.stanford.edu.

[6] Amazon Web Services, http://aws.amazon.com.

[7] C. E. Tsourakakis,”Fast counting of triangles in real-world

networks: proofs, algorithms and observations,” Technical Report

CMU-ML-08-103, 2008.

0

100

200

300

400

500

600

~100K ~905K ~5,000K ~16,000K ~69,000K

Rectangle

Triangle

Edges

Fig. 2: Enumerating Triangles and Rectangles on Two Computers

Minutes

0

50

100

150

200

250

300

2 4 8 12 16 20

1GB

10MB

1MB

Computers

Fig 3: Running Time Enumerating Triangles as the Number

of Computers Increases Minutes

0

100

200

300

400

500

600

700

800

900

3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35

Time 10MB

Time 1MB

Iter 10MB

Iter 1MB

Fig 4: Finding k-trusses as K Increases on Real World Graphs

Time(seconds) and Iterations vs. K Value

