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Abstract— Analyzing patterns in large-scale graphs, such as 

social networks (e.g. Facebook, Linkedin, Twitter) has many 

applications including community identification, blog analysis, 

intrusion and spamming detections. Currently, it is impossible 

to process information in large-scale graphs with millions even 

billions of edges with a single computer. In this paper, we take 

advantage of MapReduce, a programming model for 

processing large datasets, to detect important graph patterns 

using open source Hadoop on Amazon EC2. The aim of this 

paper is to show how MapReduce cloud computing with the 

application of graph pattern detection scales on real world 

data.  We implement Cohen’s MapReduce graph algorithms to 

enumerate patterns including triangles, rectangles, trusses and 

barycentric clusters using real world data taken from Snap 

Stanford.  In addition, we create a visualization algorithm to 

visualize the detected graph patterns.  The performance of 

MapReduce graph algorithms has been discussed too. 

 

Index Terms—MapReduce, Cloud Computing, Graph 

Algorithms, Pattern Detection, Cohesive Components 

I. MOTIVATION 

Graph models are frequently used in a wide range of 
applications to capture the relationships among data entities.  
In a graph model, data entities are represented as vertices 
while edges represent relationships among the entities.  In 
order to extract useful information from these relationships, 
one effective approach is to analyze special patterns such as 
cohesive components concisely from the graph. 

Technological advances have increased the volume of 
collected data. The corresponding graphs become larger and 
more complex, making it impractical to process them on a 
single computer.  This has stressed a need to develop 
methods that recognize patterns and cohesive groups in 
large-scale graphs efficiently and effectively [1].   

II. MAPREDUCE GRAPH ALGORITHMS 

Recently, MapReduce has emerged as a reasonable 
solution to processing large data [2]. It also earned a strong 
interest to those who want to analyze graphs [1,3]. The 
programmer defines a map function which processes the 
input data and generates intermediate key/value pairs. The 
programmer also defines a reduce function which is applied 
to the intermediate key/value pairs to output final key/value 
pairs. 

Using the open-source Hadoop implementation of the 
MapReduce model, programs can be automatically 
parallelized and executed on a cluster of machines [4]. The 
tasks of partitioning input data, scheduling the map and 
reduces tasks across a cluster of machines, handling machine 
errors, and managing communication between machines are 
transparent to programmers. The machine running the user’s 
program, referred to as the master node, partitions input data 
into data segments and assigns map tasks to worker nodes. 
The map function is run on data segments in parallel 
distributed across multiple machines. The master node 
assigns reduce tasks to worker nodes which perform the 
reduce function on the intermediate map of key/value pairs. 
Figure 1 shows the execution of the MapReduce 
programming model in a distributed system. 

Fig. 1: MapReduce programming model 

Cohen has outlined six MapReduce algorithms to analyze 

graph patterns [1]. These patterns include triangles, 

rectangles, trusses, barycentric clusters, and components. 

Some of these patterns such as triangles can be the basis for 

analyzing other patterns. A triangle is a three-vertex graph 

where every vertex connects to each other.  A rectangle is a 

four-vertex cycle, which can be found by finding two 

triangles without the overlapped edge. A k-truss is a 

relaxation of a k-clique.  In a k-truss, every edge is in k-2 

triangles, while in a k-clique every vertex is connected to 

each other. Thus finding trusses can be done by enumerating 

triangles. Like trusses, barycentric clusters were proposed to 

find highly connected subgraphs. In barycentric clustering, 

vertices are given random initial positions that are then 

updated by multiplying by a matrix a given number of 

times. 



III. EXPERIMENTAL RESULTS AND ANALYSIS 

We have implemented six MapReduce algorithms to 

analyze graph patterns including triangles, rectangles, 

trusses, barycentric clusters, and components. The input 

data for these algorithms are from Snap Stanford, which 

contains different types and sizes of real world datasets [5]. 

In Snap Stanford, the data is formatted as raw edges which 

fit nicely into Cohen’s proposed algorithms.  We used three 

different datasets ranging from 1 MB to 1GB, wiki-Vote 

(7,115 Vertices, 103,689 Edges, 1MB), soc-Slashdot0811 

(77,360 Vertices, 905,468 Edges, 10MB), and soc-

LiveJournal1 (4,847,571 Vertices, 68,993,773 Edges, 1GB).  

All of the data processed was run on Amazons Elastic 

MapReduce “small” computers.  Each of them was outfitted 

with 1.7 GB of memory 160 GB of storage and the 

equivalent of a 1.7GHz Xeon processor [6].  We show and 

discuss some experimental results below.  

A. Enumerating Triangles and Rectangles 

The MapReduce algorithms for enumerating triangles 

and rectangles scale well when datasets get large as shown 

in Figure 2. They were successfully run across an array of 

cluster sizes from one computer to twenty. We analyzed 

running times on the 1GB dataset and found a steady 

decline in the curve as the number of computer increased as 

shown in Figure 3.  There are many other triangle counting 

algorithms that are very fast.  Some of which are less than 

100% accurate and do not actually enumerate every triangle 

[7]. We felt Cohen’s MapReduce triangle enumerating 

algortihm offered an advantage over the others:  it counts 

every triangle accurately and allows the data to be analyzed 

on each individual triangle.  In addition, it uses raw edges 

instead of a vertex adjacent matrix which are not efficent for 

sparse graphs with millions of vertices. 

B. Finding Trusses  

Finding trusses is an excellent way to find highly 

connected subgraphs, and further analysis is required to see 

how it scales on the cloud.  Figure 4 shows different run 

times as k increaeses. For any dataset, the fastest run time 

was when k=3. This is obvious because the algorithm 

enumerates triangles once. However the running time of the 

program explodes when k is greater than three. The reason 

is that even if one edge is dropped the entire program needs 

to be re-run as the finding trusses algorithm states.  

C. Barycentric Clustering 

We found that the barycentric algorithm does not have 

consistent outputs. By increasing the cut-off length for 

edges we would get the desired results on very small graphs 

(less than fourteen vertices). However, the algorithm lost the 

consistency as we increased the graph size. For the purpose 

of finding clusters the algorithm did well, but was not 

always consistent on different datasets.  We feel that further 

work is needed to fully consider the usefulness of the 

algorithm.  
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Fig. 2: Enumerating Triangles and Rectangles on Two Computers 
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Fig 3: Running Time Enumerating Triangles as the Number 

of Computers Increases Minutes 
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Fig 4: Finding k-trusses as K Increases on Real World Graphs 
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